Biogas
Biogas ist ein brennbares Gas, das durch Vergärung von Biomasse jeder Art entsteht. Es wird in Biogasanlagen hergestellt, wozu sowohl Abfälle als auch nachwachsende Rohstoffe vergoren werden.
Das Präfix Bio weist auf die „biotische“ Bildungsweise im Gegensatz zum fossilen Erdgas hin, nicht auf eine Herkunft aus ökologischer Landwirtschaft.
Das Gas kann zur Erzeugung von elektrischer Energie, zum Betrieb von Fahrzeugen oder zur Einspeisung in ein Gasversorgungsnetz eingesetzt werden. Für die Verwertung von Biogas ist der Methananteil am wichtigsten, da seine Verbrennung Energie freisetzt.
Inhaltsverzeichnis
Rohstoffe
Material | Biogasertrag<ref name="FNR Biogas">Fachagentur Nachwachsende Rohstoffe e. V. (FNR): Biogas Basisdaten Deutschland Stand: Januar 2008.</ref> in m³ pro Tonne Frischmasse |
Methangehalt |
---|---|---|
Maissilage | 202 | 52 % |
Grassilage | 172 | 54 % |
Roggen-GPS | 163 | 52 % |
Futterrübe | 111 | 51 % |
Bioabfall | 100 | 61 % |
Hühnermist | 80 | 60% |
Zuckerrübenschnitzel | 67 | 72 % |
Schweinemist | 60 | 60 % |
Rindermist | 45 | 60 % |
Getreideschlempe | 40 | 61 % |
Schweinegülle | 28 | 65 % |
Rindergülle | 25 | 60 % |
Ausgangsstoffe sind biogene Materialien wie die folgenden:
- vergärbare, biomassehaltige Reststoffe wie Klärschlamm, Bioabfall oder Speisereste
- Wirtschaftsdünger (Gülle, Mist)
- bisher nicht genutzte Pflanzen sowie Pflanzenteile (beispielsweise Zwischenfrüchte, Pflanzenreste und dergleichen)
- gezielt angebaute Energiepflanzen (Nachwachsende Rohstoffe).
Dabei ergeben verschiedene Ausgangsmaterialien unterschiedliche Biogaserträge und je nach ihrer Zusammensetzung ein Gas mit variablem Methangehalt, wie die nebenstehende Tabelle zeigt.
Ein Großteil der Rohstoffe, insbesondere Wirtschaftsdünger und Pflanzenreste, fallen prinzipiell kostenlos in der Landwirtschaft an, daher stellt dieser Wirtschaftszweig das größte Potenzial für die Produktion von Biogas. Ganz andere Auswirkungen hat der Anbau von Energiepflanzen:
- die Produktion steht in Konkurrenz mit der Nahrungsmittelproduktion,
- Monokulturen können eine Landschaftsverarmung bewirken.
Vorteile von Biogas kann man mit den (möglichen) Nachteilen von Energiepflanzen abwägen ("Ökobilanz").<ref>Zeit online: Biostrom, nein danke!</ref><ref>Biokraftstoffe – Grüne Energie um jeden Preis</ref>
Entstehung
Biogas entsteht durch den natürlichen Prozess des mikrobiellen Abbaus organischer Stoffe unter anoxischen Bedingungen. Dabei setzen Mikroorganismen die enthaltenen Kohlenhydrate, Eiweiße und Fette in die Hauptprodukte Methan und Kohlenstoffdioxid um. Dafür sind anoxische Verhältnisse notwendig, also die Abwesenheit von Sauerstoff.
Der Prozess besteht aus mehreren Stufen, die jeweils von Mikroorganismen verschiedener Stoffwechseltypen durchgeführt werden. Polymere Bestandteile der Biomasse, wie Zellulose, Lignin, Proteine, werden zunächst durch mikrobielle Exoenzyme zu monomeren (niedermolekularen) Stoffen umgewandelt. Niedermolekulare Stoffe werden durch gärende Mikroorganismen zu Alkoholen, organischen Säuren, Kohlenstoffdioxid (CO2) und Wasserstoff (H2) abgebaut. Die Alkohole und organischen Säuren werden durch acetogene Bakterien zu Essigsäure und Wasserstoff umgesetzt. In der letzten Stufe werden durch methanogene Archaeen aus Kohlenstoffdioxid, Wasserstoff und Essigsäure die Endprodukte Methan (CH4) und Wasser gebildet.
Die Bezeichnung Biogas wird zusammenfassend für energiereiche Gase verwendet, die unter anoxischen Bedingungen durch Mikroorganismen aus biotischen Stoffen gebildet werden:
- Klärgas: das bei der Reinigung von Abwasser entstehende Gas
- Faulgas: das erst in der Klärschlammfaulung produzierte Gas
- Deponiegas: aus einer Mülldeponie austretendes Gas
Zusammensetzung
Die Zusammensetzung von Biogas ist sehr unterschiedlich, weil sie von der Substratzusammensetzung und der Betriebsweise des Faulbehälters abhängt. In der Schweiz wird die Bezeichnung Kompogas verwendet; dies wird ausschließlich aus pflanzlichen Abfällen produziert.
Vor der Biogasaufbereitung besteht die Gasmischung aus den Hauptkomponenten Methan (CH4) und Kohlenstoffdioxid (CO2). Darüber hinaus sind meist auch Stickstoff (N2), Sauerstoff (O2), Schwefelwasserstoff (H2S), Wasserstoff (H2) und Ammoniak (NH3) enthalten.
Wertvoll im wassergesättigt anfallenden Biogas ist das zu rund 60 % enthaltene Methan. Je höher dessen Anteil ist, desto energiereicher ist das Gas. Nicht nutzbar ist der Wasserdampf. Im Rohbiogas störend sind vor allem Schwefelwasserstoff und Ammoniak. Sie werden bei der Biogasaufbereitung vor der Verbrennung entfernt, um Gefährdungen des Menschen, Geruchsbelästigungen sowie Korrosion in Motoren, Turbinen und nachgeschalteten Komponenten (unter anderem Wärmetauscher) zu verhindern. Ebenfalls störend ist das CO2, das in bestimmten Anwendungsfällen abgeschieden und verwertet werden kann.
Klima- und Umweltschutz
Methan ist ein wichtiges Treibhausgas. Daher ist die Prüfung der Dichtigkeit von Biogasanlagen und aller zugehörigen Komponenten ein maßgeblicher Beitrag zum Klimaschutz.
Biogasanlagen sind nicht vollständig dicht; auch für Wartungsarbeiten müssen sie zugänglich bleiben. Deshalb kann beim Betrieb einer Biogasanlage Methan, das eine 25- bis 30-mal stärkere aufheizende Wirkung auf das Klima hat als CO2, in die Atmosphäre entweichen.
Biogas erreicht seinen maximalen Wirkungs- und Versorgungsgrad, wenn es gleichzeitig zur Strom- und Wärmeerzeugung genutzt wird; in der so genannten Kraft-Wärme-Kopplung (KWK) weist es die beste Klimabilanz auf. Eine Stromerzeugung ohne Wärmenutzung oder die rein thermische Verwendung von aufbereitetem Biogas in Erdgasthermen sind hingegen erwartungsgemäß suboptimal, wie die Agentur für Erneuerbare Energien ermittelte.<ref name="nutzungspfade">vgl. Grafik-Dossier: Biogas-Nutzungspfade im Vergleich sowie Grafik-Dossier: Nutzungspfade von Biomasse, Energieholz, Energiepflanzen und Reststoffen</ref>
Biogas verbrennt klimaneutral, da das entstehende CO2 vorher von Pflanzen aus der Luft gebunden wurde. Es gibt aber Faktoren, die die Klimabilanz von Biogasanlagen durch den Anbau von Energiepflanzen verschlechtern können:
Bei der Produktion von Energiepflanzen kommt es zu einem hohen Energieeinsatz. Eine mit Maissilage betriebene Anlage verbraucht im Gegensatz zur Abfallverwertung bei allen Produktionsschritten Energie: Saatvorbereitung, Säen, Düngen, Schutz vor Schädlingen (Pflanzenschutzmittelproduktion und Einsatz), Ernte, Transport, Silage, Vergärung unter Umwälzen und Rücktransport der Gärrestmenge auf die Felder. Die Klimabilanz der Energiepflanzen kann verbessert werden, wenn der für die Produktion nötige Energiebedarf selbst aus regenerativen Energien gedeckt wird, etwa wenn die eingesetzten Landmaschinen ebenfalls mit Treibstoffen aus Energiepflanzen oder Ökostrom betrieben werden.
Das bei intensiver Landwirtschaft durch Stickstoffdüngung entstehende Distickstoffmonoxid (auch als „Lachgas“ bezeichnet) muss in die Klimabilanz mit eingerechnet werden. Die Produktion von Lachgas erfolgt durch Mikroben, die diesen aus Luftsauerstoff und dem übermäßig zugeführten Stickstoff bilden. Lachgas hat ein ungefähr 300-mal größeres Treibhausgaspotenzial als CO2. Auch die Änderung der Landnutzung muss berücksichtigt werden: Wenn Weideland zum Maisacker umgepflügt wird, setzt der dort enthaltene Humus durch Luftkontakt CO2 und andere Treibhausgase frei.
Der Anbau von Mais ist ökologisch umstritten. Mais (Zea mays) ist ein Gras tropischen Ursprungs. Der Anbau erfolgt so, dass Frost vermieden wird, die Aussaat also spät im Jahr stattfindet, die Pflanzen im Mai/Juni gut wachsen und die Ernte Ende September beginnt. Während des größten Teils des Jahres liegen die mit Mais bepflanzten Äcker somit frei und werden durch Wind und Regen erodiert. Dadurch kann es zum Eintrag von Pestiziden und Dünger in naheliegende Gewässer, aber auch ins Grundwasser kommen. Der Anbau von Mais in Europa ist ohne diese Hilfsstoffe gar nicht möglich. Dies stellt ein Problem dar, da es sowohl zu Eutrophierungen als auch zu Verlandung der Gewässer kommen kann. Ebenso kann es zu Verwehungen von großen Mengen Staub aus trockenen Äckern kommen, was wiederum die Bodenfruchtbarkeit beeinträchtigt, weil hierdurch wichtige Bodenbestandteile verloren gehen; es besteht langfristig die Gefahr der Wüstenbildung, was insbesondere in den USA bekannt ist.
Durch den großflächigen Anbau von Mais-Monokulturen zur Produktion von Biogas kommt es zu weiteren ökologischen Auswirkungen. Weideland und Feuchtwiesen werden in Ackerland umgewandelt, Brachflächen wieder genutzt. Dies hat Auswirkungen auf Vögel (z. B. Kiebitz, Lerche, Storch) und andere Tiere, die dadurch Nahrungs- und Brutgebiete verlieren.
Anders als bei konventionell wirtschaftenden Betrieben mit Biogasanlagen spielt der Mais als Energiepflanze für die Ökolandwirte nur eine recht geringe Rolle. Wichtiger sind hingegen Kleegras und Reststoffe wie Gülle und Mist. Der Ökolandbau bietet auch Anregungen für konventionell arbeitende Betriebe, was etwa den Anbau von Zwischenfrüchten und Untersaaten oder den gleichzeitigen Anbau mehrerer Pflanzen betrifft; so können auch konventionelle Betriebe für ihren Energiepflanzenanbau von den Erfahrungen der Ökobetriebe profitieren.<ref>Agentur für Erneuerbare Energien: Hintergrundpapier: Biogas und Ökolandbau</ref>
Potenziale
Im Jahr 2014 entspricht die Biogasproduktion in Deutschland etwa 20 % der Erdgasimporte aus Russland. Mit dem verbleibenden Potenzial können etwa weitere 10 % ersetzt werden, unter Berücksichtigung technischer und demografischer Entwicklungen bis zu insgesamt 55 %. In der EU entspricht die derzeitige Biogasproduktion etwa 6 % der Erdgasimporte aus Russland. Mit dem verbleibenden Potenzial können etwa weitere 26 % ersetzt werden, unter Berücksichtigung technischer und demografischer Entwicklungen bis zu insgesamt etwa 125 %.<ref>DBFZ: Potenziale für Biogas und Biomethan in Deutschland und Europa. Berlin 2014</ref>
Einspeisung in das Erdgasnetz
Nach einer umfassenden Biogasaufbereitung kann eine Einspeisung in das Erdgasnetz erfolgen. Neben dem Entfernen von Wasser, Schwefelwasserstoff (H2S) und Kohlendioxid (CO2) muss auch eine Anpassung an den Heizwert des Erdgases im jeweiligen Gasnetz (Konditionierung) stattfinden. Wegen des hohen technischen Aufwands lohnt sich die Aufbereitung und Einspeisung derzeit nur für überdurchschnittlich große Biogasanlagen. Erste Projekte dazu starteten 2007.<ref>Lichtblick verkauft auch Biogas, die tageszeitung 12. Juni 2008</ref> Neuentwicklungen wie etwa die Hohlfasermembran der Evonik Industries aus Essen ermöglichen eine Reinigung von Biogas bis zu einem Reinheitsgrad von bis zu 99 Prozent und bringen es damit auf Erdgasqualität.<ref>Polyimid-EVONIK: Hohlfasern von Evonik Industries zur Biogasaufbereitung</ref>
Um Erdgasqualität zu erreichen sind folgende Aufbereitungsschritte notwendig:
Entschwefelung: Die Entschwefelung ist notwendig, um Korrosion zu vermeiden. Schwefel findet sich als Schwefelwasserstoff (H2S) im Biogas, bei dessen Verbrennung entstünden bei Anwesenheit von Wasserdampf aggressive Säuren, nämlich Schweflige Säure (H2SO3) und Schwefelsäure (H2SO4). Meist ist der Schwefelwasserstoffanteil gering, kann aber bei proteinreichem Substrat (Getreide, Leguminosen, Schlachtabfälle und dergleichen) stark ansteigen. Es gibt verschiedene Möglichkeiten zur Entschwefelung, unter anderem sind biologische, chemische und adsorptive Verfahren möglich. Gegebenenfalls sind mehrere Stufen nötig wie Grob- beziehungsweise Feinentschwefelung.
Trocknung: Da Biogas wasserdampfgesättigt ist, würden bei Abkühlung unbehandelten Biogases erhebliche Kondensatmengen anfallen, welche zu Korrosion in Motoren führen können. Darüber hinaus soll die Bildung von Wassertaschen vermieden werden. Deshalb muss das Gas getrocknet werden. Dies erfolgt durch eine Abkühlung des Gases auf Temperaturen unterhalb des Taupunktes in einem Wärmetauscher, das kondensierte Wasser kann entfernt werden und das abgekühlte Gas wird durch einen zweiten Wärmetauscher geleitet und wieder auf Betriebstemperatur erwärmt. Gleichzeitig mit der Trocknung wird das gut wasserlösliche Ammoniak entfernt.
CO2-Abtrennung: Kohlenstoffdioxid (CO2) ist nicht oxidierbar und trägt daher nicht zum Heizwert des Biogases bei. Zur Erreichung von Erdgasqualität muss der Heizwert des Biogases dem des Erdgases angepasst werden. Da Methan die energieliefernde Komponente des Biogases ist, muss dessen Anteil durch Entfernung von CO2 erhöht werden. Die derzeit gängigen Verfahren der Methananreicherung durch CO2-Abtrennung sind Gaswäschen und die Druckwechsel-Adsorption (Adsorptionsverfahren an Aktivkohle).<ref>Biogasaufbereitung für Einspeisung ins Erdgasnetz</ref> Daneben sind weitere Verfahren wie die kryogene Gastrennung (mittels tiefer Temperaturen) oder die Gastrennung durch Membranen in der Entwicklung.
Konditionierung: Bei der Konditionierung wird das Biogas bezüglich Trockenheit, Druck und Heizwert den Erfordernissen angepasst. Je nach Herkunft hat Erdgas unterschiedliche Heizwerte, daher muss der obere Heizwert des aufbereiteten Biogases an das jeweilige Netz angepasst werden.
Verdichtung: Zur Einspeisung in das Erdgasnetz sind, abhängig vom jeweiligen Netzbetrieb, niedrige bis mittlere Drücke bis etwa 20 bar notwendig. Da das Biogas nach der Aufbereitung meist einen geringeren Druck aufweist, muss es mit Hilfe eines Kompressors entsprechend verdichtet werden.
Weitere Reinigungs- und Aufbereitungsschritte: In Deponie- und Klärgasen können Siloxane sowie halogenierte und cyclische Kohlenwasserstoffe enthalten sein. Siloxane verursachen stark erhöhten Motorenverschleiß. Halogen-Kohlenwasserstoffe führen zu Emissionen toxischer Verbindungen. Siloxane und Kohlenwasserstoffe können mittels Gaswäsche, Gastrocknung oder Adsorption an Aktivkohle aus dem Biogas entfernt werden.
Nutzung
Biogas eignet sich neben der Eigennutzung in der Landwirtschaft auch als Beitrag zu einem Energiemix aus erneuerbaren Energien. Dies, weil es zum einen grundlastfähig ist, das heißt, dass das Biogas im Gegensatz zu anderen erneuerbaren Energieträgern wie Wind oder Sonne kontinuierlich verfügbar ist, zum anderen lassen sich Biomasse und Biogas speichern, wodurch zum Energieangebot in Spitzenzeiten beigetragen werden kann. Deswegen bietet sich dieser Bioenergieträger zum Ausgleich kurzfristiger Schwankungen im Stromangebot der Wind- und Sonnenenergie an. Bisher werden die meisten Biogasanlagen kontinuierlich, quasi als Grundlastkraftwerk, betrieben. Zur Nutzung der enthaltenen Energie stehen die folgenden Möglichkeiten zur Wahl:<ref name="nutzungspfade"/> Kraft-Wärme-Kopplung (KWK) vor Ort: Biogas wird in einem Blockheizkraftwerk (BHKW) für die Strom- und Wärmeerzeugung genutzt (KWK); der Strom wird vollständig ins Netz eingespeist, die ca. 60 Prozent ausmachende Abwärme kann vor Ort genutzt werden. Alternativ kann das Biogas nach entsprechender Aufbereitung ins Versorgungsnetz eingespeist werden.
Blockheizkraftwerke
In Deutschland ist die Verbrennung von Biogas in Blockheizkraftwerken (BHKW) am häufigsten, um zusätzlich zur Wärme auch Elektrizität zur Einspeisung in das Stromnetz zu produzieren.
Da der größte Teil der Biogaserträge durch den Stromverkauf erzielt wird, befindet sich beim Wärmeabnehmer ein BHKW, welches als Hauptprodukt Strom zur Netzeinspeisung produziert und Wärme im Idealfall in ein Nah- oder Fernwärmenetz einspeist. Ein Beispiel für ein Nahwärmenetz ist das Bioenergiedorf Jühnde. Bisher wird allerdings bei den meisten landwirtschaftlichen Biogasanlagen mangels Wärmebedarf vor Ort nur ein geringer Teil der Wärme genutzt, beispielsweise zur Beheizung des Fermenters sowie von Wohn- und Wirtschaftsgebäuden.
Biogasnetz
Eine Alternative ist der Transport von Biogas in Biogasleitungen über Mikrogasnetze. Die Strom- und Wärmeproduktion kann dadurch bei Wärmeverbrauchern stattfinden.
Weitere Nutzungsarten
- Hauptartikel: Biomethan
Biogas kann als nahezu CO2-neutraler Treibstoff in Kraftfahrzeugmotoren genutzt werden. Da eine Aufbereitung auf Erdgasqualität notwendig ist, muss der CO2-Anteil weitestgehend entfernt werden. Sogenanntes Biomethan oder Bioerdgas muss auf 200 bis 300 bar verdichtet werden, um in umgerüsteten Kraftfahrzeugen genutzt werden zu können.
In der Schweiz fahren Lastwagen der Walter Schmid AG und der dazugehörigen Firma Kompogas seit 1995 mit Biogas, der erste Lastwagen erreichte im Sommer 2010 seinen millionsten Kilometer.<ref>Zürcher Unterländer Zeitung berichtet über 15 Jahre Fahren mit Biogas</ref> Ab 2001 fuhr auch die Migros Zürich<ref>Kompogas Lastwagen bei Migros Zürich</ref> mit Kompogas und seit 2002 auch McDonalds Schweiz.<ref>Kompogas-Lastwagen seit 2002</ref>
Bisher wird Biogas jedoch selten auf diesem Weg verwertet. 2006 wurde die erste deutsche Biogastankstelle in Jameln (Wendland) eröffnet.<ref>Homepage des Betreibers der ersten Biogastankstelle</ref>
Wegen der hohen elektrischen Wirkungsgrade könnte in Zukunft zudem die Verwertung von Biogas in Brennstoffzellen interessant sein. Der hohe Preis für die Brennstoffzellen, die aufwendige Gasaufreinigung und die in Praxisversuchen bisher noch geringe Standzeit verhindern bisher eine breitere Anwendung dieser Technik.
Biogas weltweit
Während Biogas erst in den letzten 10 Jahren in das Bewusstsein der europäischen Bevölkerung gerückt ist, wurde in Indien bereits Ende des 19. Jahrhunderts Biogas zur Energieversorgung eingesetzt. Die ökonomische Verbreitung der Biogasnutzung hängt vor allem von der Weltenergiepolitik (z. B. während der Erdölschwemme von 1955 bis 1972 und der Ölkrise von 1972 bis 1973) und den jeweiligen nationalen Gesetzgebungen (zum Beispiel dem Erneuerbare-Energien-Gesetz in Deutschland) ab. Unabhängig davon wurden kleine Biogasanlagen in Ländern wie Indien, Südkorea, Taiwan und Malaysia zur privaten Energieversorgung gebaut, wobei mit über 40 Millionen Haushaltsanlagen die meisten in China stehen.
Deutschland
Von 1999 bis 2010 wuchs die Zahl der Biogasanlagen von etwa 700 auf 5905, die insgesamt rund 11 % des Stroms aus erneuerbaren Energien produzieren.<ref>Bestandsentwicklung der Biogasanlagen in Deutschland</ref> Ende 2011 waren in Deutschland rund 7.200 Biogasanlagen mit einer installierten elektrischen Anlagenleistung von ca. 2.850 MW in Betrieb.<ref>Zubau der Kapazitäten bei Biogasanlagen 2011</ref> Damit ersetzen Deutschlands Biogasbauern mehr als zwei Atomkraftwerke und versorgen über fünf Millionen Haushalte mit Strom.<ref>Biogas versorgt mehr als 5 Millionen Haushalte, Top Agrar Heute, 24. Januar 2012</ref> Aufgrund unsicherer politischer Rahmenbedingungen hat sich der Zubau seit 2012 stark verringert, um nur noch 200 MW in 2013.<ref>DBFZ: Stromerzeugung aus Biomasse (Vorhaben IIa Biomasse). Zwischenbericht, Juni 2014</ref>
2013 waren in Deutschland insgesamt 7.720 Biogasanlagen mit einer elektrischen Gesamtleistung von etwa 3.550 Megawatt installiert, die 27 Mio. Megawattstunden elektrische Energie oder 4,3 % des deutschen Bedarfs produzierten. Zusätzlich zur elektrischen Energie wurden weitere 13,5 Mio. MWh Wärmeenergie erzeugt, was einem Anteil von 0,9 % des deutschen Jahresbedarfs entspricht<ref name="media.repro-mayr.de">Situationsbericht 2014/2015 des deutschen Bauernverbandes; Seite 36 ff.; abgerufen am 14. Dezember 2014 (Memento vom 14. Dezember 2014 im Internet Archive)</ref>. Zur Versorgung dieser Biogasanlagen, von denen sich etwa 75 % im Besitz bäuerlicher Unternehmen befinden, wurden 1,268 Mio. Hektar Anbaufläche verwendet<ref name="media.repro-mayr.de"/>, was etwa 10,6 % der als Ackerland genutzten Flächen in Deutschland<ref>DESTATIS Pressemeldung zur Bodennutzungshaupterhebung 2014 (Memento vom 13. November 2014 im Internet Archive)</ref> entsprach.
Es wird angenommen, dass die Erzeugung von Bioerdgas bis 2020</ref>Schweden
In Schweden ist die Stromerzeugung aus Biogas wegen niedrigerer Strompreise (ca. 10 Euro-Cent/kWh)<ref>http://www.kundkraft.se/?fto=content/prices&name=prices_completed_auctions</ref> gegenwärtig noch unrentabel. Der größte Teil des Biogases (53 %) wird zur Wärmegewinnung genutzt. Im Gegensatz zu anderen europäischen Staaten, wie beispielsweise Deutschland, ist in Schweden die Aufbereitung auf Erdgasqualität (Biomethan) und Nutzung als Treibstoff in Gasfahrzeugen mit 26 % eine weit verbreitete Variante.<ref>http://www.biogasportalen.se/BiogasISverigeOchVarlden/BiogasISiffror/Anvandning.aspx</ref>
Weblinks
- Onmitan – unabhängiges Portal zum Thema Biogaserzeugung
- Fachverband Biogas in Deutschland
- Fördergesellschaft für nachhaltige Biogas- und Bioenergienutzung e.V.
- Deutsches BiomasseForschungsZentrum (DBFZ)
- Biogas aus der Landwirtschaft Basisinfo von BINE Informationsdienst
- Portal "Biogas" bei der Agentur für Erneuerbare Energie, einschließlich Hintergrundinformationen, u.a. Hintergrundpapier: Biogas und Ökolandbau
- Übersicht über installierte Leistung nach Bundesländern
- European Biomass Association (AEBIOM), Infos und Statistiken zu Biogas in Europa, zum Beispiel "A Biogas Road Map for Europe" (PDF; 2,7 MB), 20-seitige Broschüre, 2007
- Handbuch Biogas
- Sendung Doku – Die Wahrheit über erneuerbare Energie bei Arte
Literatur
- Biogas: Strom aus Gülle und Biomasse. Planung, Technik, Förderung, Rendite. Top agrar, Das Magazin für moderne Landwirtschaft. Landwirtschaftsverlag, o.O. 2000, ISBN 3-7843-3075-4
- Martin Kaltschmitt, Hans Hartmann, Hermann Hofbauer (Hrsg.): Energie aus Biomasse. Grundlagen, Techniken und Verfahren, Springer, Berlin / Heidelberg 2009, ISBN 978-3-540-85094-6.
- Martin Kaltschmitt, Wolfgang Streicher, Andreas Wiese (Hrsg.): Erneuerbare Energien. Systemtechnik, Wirtschaftlichkeit, Umweltaspekte. Springer Vieweg, Berlin / Heidelberg 2013, ISBN 978-3-642-03248-6.
- Heinz Schulz, Barbara Eder: Biogas-Praxis. Grundlagen, Planung, Anlagenbau, Beispiele. Ökobuch, o.O. 2005, ISBN 3-922964-59-1
- Fachagentur Nachwachsende Rohstoffe e. V.: Frank Hofmann, André Plättner, Sönke Lulies, Frank Scholwin, Stefan Klinski, Klaus Diesel: Einspeisung von Biogas in das Erdgasnetz; Leipzig 2006, ISBN 3-00-018346-9 [2]
Einzelnachweise
<references />