David Hilbert


aus Wikipedia, der freien Enzyklopädie
Wechseln zu: Navigation, Suche
Datei:Hilbert.jpg
David Hilbert (1912)

David Hilbert (* 23. Januar 1862 in Königsberg<ref>Constance Reid Hilbert, Springer Verlag 1972, gibt Wehlau bei Königsberg an</ref>; † 14. Februar 1943 in Göttingen) war ein deutscher Mathematiker. Er gilt als einer der bedeutendsten Mathematiker der Neuzeit. Viele seiner Arbeiten auf dem Gebiet der Mathematik und mathematischen Physik begründeten eigenständige Forschungsgebiete. Mit seinen Vorschlägen begründete er die bis heute bedeutsame formalistische Auffassung von den Grundlagen der Mathematik und veranlasste eine kritische Analyse der Begriffsdefinitionen der Mathematik und des mathematischen Beweises. Diese Analysen führten zum Gödelschen Unvollständigkeitssatz, der unter anderem zeigt, dass das Hilbertprogramm, die von ihm angestrebte vollständige Axiomatisierung der Mathematik, nicht gänzlich erfüllt werden kann. Hilberts programmatische Rede auf dem internationalen Mathematikerkongress in Paris im Jahre 1900, in der er eine Liste von 23 mathematischen Problemen vorstellte, beeinflusste die mathematische Forschung des 20. Jahrhunderts nachhaltig.<ref>150. Geburtstag des Mathematikers David Hilbert – Schneller als Einstein. In: Süddeutsche Zeitung, 22. Januar 2012 auf: sueddeutsche.de</ref><ref>Der Einstein der Mathematik. In: Die Zeit, 12. Januar 2012 auf: zeit.de</ref>

Leben

Königsberg

Kindheit und Jugendzeit

Datei:ID003743 B175 FriedrichsCollegium.jpg
Friedrichskollegium in Königsberg
Datei:ID003745 B177 KglWilhelmGymnasium.jpg
Königliches Wilhelm-Gymnasium (Postkarte)

Hilbert wurde als Sohn des Amtsgerichtsrats Otto Hilbert und seiner Frau Maria Theresia, geb. Erdtmann, geboren. Väterlicherseits entstammte er einer alten ostpreußischen Juristenfamilie, die Mutter kam aus einer Königsberger Kaufmannsfamilie. Der Vater wurde als eher einseitiger Jurist beschrieben, der der Laufbahn seines Sohnes kritisch gegenüberstand, während die Mutter vielseitige Interessen hatte, unter anderem auf dem Gebiet der Astronomie und Philosophie sowie der angewandten Mathematik.<ref name="Blumenthal">Otto Blumenthal: Lebensgeschichte. In: David Hilbert. Gesammelte Abhandlungen. Band III, Springer-Verlag, 1970, 2. Auflage, S. 388ff digitalisierter Volltext</ref> Er hatte noch eine jüngere Schwester Elise Frenzel, die einen Richter heiratete und schon im Alter von 28 Jahren 1897 verstarb. In seiner Heimatstadt besuchte Hilbert als Schüler zunächst das Friedrichskollegium und wechselte ein Jahr vor dem Abitur auf das mehr naturwissenschaftlich-mathematisch orientierte Wilhelms-Gymnasium. Von seinen schulischen Leistungen ist nichts Bemerkenswertes überliefert, anekdotisch wurde kolportiert, dass der junge Hilbert zwar keine guten Deutschaufsätze schrieb (die hatte manchmal seine Mutter verfasst), jedoch seinen Lehrern mathematische Probleme erklären konnte. Sein Mathematiklehrer von Morstein gab ihm im Abitur die bestmögliche Zeugnisnote und bescheinigte ihm „Gründliches Wissen und die Fähigkeit, die ihm gestellten Aufgaben auf eigenem Wege zu lösen“. Auf seine Schulleistungen angesprochen meinte Hilbert später: „Ich habe mich auf der Schule nicht besonders mit Mathematik beschäftigt, denn ich wußte ja, daß ich das später tun würde.“<ref name="Blumenthal"/>

Studium, sowie Begegnung und Austausch mit Minkowski und Hurwitz

Datei:Albertina.jpg
Die Albertus-Universität um 1900 (colorierte Postkarte)

Mit dem Sommersemester 1880 begann der 18-jährige Hilbert das Studium der Mathematik an der Albertus-Universität in Königsberg. Die Königsberger Universität konnte damals auf eine glänzende Tradition in der Mathematik zurückblicken und galt in diesem Fach als eine Ausbildungsstätte ersten Ranges.<ref>Felix Klein: Vorlesungen über die Entwicklung der Mathematik im 19. Jahrhundert. S. 112 ff: Die Königsberger Schule. In: Grundlehren der mathematischen Wissenschaften. 24/25. Berlin .“

und weiter:

„Das Ziel, die Mathematik sicher zu begründen, ist auch das meinige; ich möchte der Mathematik den alten Ruf der unanfechtbaren Wahrheit, der ihr durch die Paradoxien der Mengenlehre verlorenzugehen scheint, wiederherstellen; aber ich glaube, dass dies bei voller Erhaltung ihres Besitzstandes möglich ist.“

Den intuitionistischen Ansatz von Brouwer, den Hilberts Schüler Weyl als „revolutionär“ bezeichnet hatte, lehnte Hilbert scharf ab, vor allem auch deswegen, weil er die Mathematik eines großen Teils ihres bisherigen „Besitzstandes“ beraubt hätte:

„Was Weyl und Brouwer tun, kommt im Grunde darauf hinaus, daß sie die einstigen Pfade von Kronecker wandeln: sie suchen die Mathematik dadurch zu begründen, daß sie alles ihnen unbequem erscheinende über Bord werfen und eine Verbotsdiktatur à la Kronecker errichten. Dies heißt aber unsere Wissenschaft zerstückeln und verstümmeln, und wir laufen Gefahr einen großen Teil unserer wertvollsten Schätze zu verlieren, wenn wir solchen Reformatoren folgen. […] nein, Brouwer ist nicht, wie Weyl meint die Revolution, sondern die Wiederholung eines Putschversuches mit alten Mitteln, der […] von vorneherein zur Erfolglosigkeit verurteilt ist.“<ref name="Grundlagen"/>

Hilberts erklärte Zielsetzung war es, die Arithmetik und letztlich die ganze darauf aufbauende Mathematik auf ein System von widerspruchsfreien Axiomen zu gründen. Dieses Bestreben wurde als „Hilbertprogramm“ bekannt. Im Rahmen dieses Programms formulierte Hilbert den später nach ihm benannten Hilbert-Kalkül. Das Hilbertprogramm erwies sich in der von Hilbert intendierten Form letztlich als nicht durchführbar, wie Kurt Gödel mit seinem 1930 veröffentlichten Unvollständigkeitssatz zeigen konnte. Trotzdem war das Hilbertprogramm für die Mathematik sehr fruchtbar, da es in weiten Bereichen von Mathematik und Logik zu einem vertieften Verständnis der Struktur formaler Systeme mit deren Grenzen und zur Begriffsklärung beitrug.

Analysis

In der Variationsrechnung stellte Hilbert das von Riemann in dessen Abbildungssatz verwendete Dirichlet-Prinzip auf feste Grundlagen. In den Integralgleichungen schloss er einige Lücken von Fredholm im Beweis der fredholmschen Alternative. Diese Themen flossen wesentlich in die Entwicklung der Funktionalanalysis ein. Insbesondere der wichtige Hilbert-Raum ist untrennbar mit seinem Namen verbunden.

Mathematische Physik

Hilberts Arbeiten zu Funktionenräumen (Hilbert-Raum) und partiellen Differentialgleichungen gehören heute zu den Grundlagen der mathematischen Physik. Hilbert begann sich ab 1912 intensiv der Physik zuzuwenden (zunächst in Anwendungen von Integralgleichungen auf die kinetische Gastheorie), mit deren mathematischer Behandlung er unzufrieden war. Ein bekanntes Zitat von Hilbert lautet: Die Physik ist für die Physiker eigentlich viel zu schwer.<ref>Reid Hilbert, Springer Verlag 1996, S. 127</ref> Sein Schüler und Assistent Richard Courant schlug ihm 1918 vor, ein Buchprojekt zu diesem Thema zu beginnen, das weitgehend von Courant selbst realisiert wurde, aber – wie dieser im Vorwort schrieb – auf Abhandlungen und Vorlesungen Hilberts beruhte und vom Geist der Hilbert-Schule durchdrungen sei, weshalb er (Courant) darauf bestanden habe, Hilbert als Ko-Autor aufzuführen. Nach Hilberts Biographin Constance Reid zeigte Hilbert ein Interesse an dem Buch seines ehemaligen Studenten, beteiligte sich aber ansonsten in keiner Weise.<ref>He showed an interest in the book his former student was writing bud did not participate in any other way, Constance Reid Courant, Springer/Copernicus 1996, S. 97</ref> Der erste Band erschien 1924, der zweite 1937. Das Buch wurde ein Grundlagenwerk der mathematischen Physik in der ersten Hälfte des 20. Jahrhunderts (und erfuhr nochmals in den 1950er und 1960er Jahren eine völlige Neubearbeitung durch Courant), als Nachfolger der Theory of Sound von Lord Rayleigh. Es war und ist allgemein als der Courant/Hilbert bekannt und erwies sich in der bald darauf einsetzenden stürmischen Entwicklung der Quantenmechanik als wichtige Quelle, aus der theoretische Physiker die dazu notwendige neue Mathematik erlernten.

Hilbert verfolgte auch ein Programm zu den axiomatischen Grundlagen der Physik, einem der Hilbertschen Probleme. Eine Frucht daraus waren seine Arbeiten zur Allgemeinen Relativitätstheorie. Mit der Entwicklung der Quantenmechanik in Göttingen um 1925 begann er sich auch dafür zu interessieren, teilweise in Zusammenarbeit mit John von Neumann und seinem physikalischen Assistenten (die Arnold Sommerfeld regelmäßig für Hilbert auswählte) Lothar Nordheim. 1928 entstand daraus der Aufsatz Die Grundlagen der Quantenmechanik von Nordheim, Hilbert und von Neumann.

Allgemeine Relativitätstheorie

Am 20. November 1915, fünf Tage vor Einstein, reichte Hilbert eine Arbeit zur allgemeinen Relativitätstheorie ein, die zur einsteinschen Theorie äquivalent war, allerdings ohne die einsteinschen Feldgleichungen, die aber in Hilberts Variationsprinzip enthalten sind. Seine Arbeit erschien jedoch erst nach der einsteinschen Arbeit. Hilbert hat niemals die Urheberschaft für die Allgemeine Relativitätstheorie beansprucht und einen öffentlichen „Prioritätenstreit“ zwischen Einstein und Hilbert gab es nicht. Verschiedene Wissenschaftshistoriker haben jedoch sehr wohl über die Priorität spekuliert. Während zum Beispiel Fölsing behauptet, dass Einstein möglicherweise von Hilbert beeinflusst wurde,<ref>Albrecht Fölsing: Albert Einstein (1995), ISBN 3-518-38990-4 – Leben und Werk werden sehr ausführlich auf 959 Seiten wissenschaftlich dargestellt.</ref> haben umgekehrt Corry/Renn/Stachel die eigenständige Vervollkommnung der Gleichungen durch Hilbert aufgrund einer Entdeckung im Jahre 1997 angezweifelt,<ref>Leo Corry, Jürgen Renn, John Stachel: Belated Decision in the Hilbert-Einstein Priority Dispute, SCIENCE, Vol. 278, 14 November 1997.</ref> was jedoch wiederum von anderen bestritten wird.<ref>Daniela Wuensch, Zwei wirkliche Kerle, Neues zur Entdeckung der Gravitationsgleichungen der Allgemeinen Relativitätstheorie durch Einstein und Hilbert. Termessos, 2005, ISBN 3-938016-04-3</ref><ref>Klaus P. Sommer: Wer entdeckte die Allgemeine Relativitätstheorie? Prioritätsstreit zwischen Hilbert und Einstein. In: Physik in unserer Zeit. 36, Nr. 5, 2005, S. 230–235, ISSN 0031-9252</ref>

Gegen das Ignorabimus

Hilbert wehrte sich immer gegen eine Sicht der Grenzen der Wissenschaft im Sinne eines ignoramus et ignorabimus. Sein Glaube, dass der Mensch die Welt verstehen kann, zeigt sich in seinem Ausspruch: Wir müssen wissen, und wir werden wissen. Was Hilbert damit sagen wollte, wird aus dem folgenden Zitat deutlich:

„Einst sagte der Philosoph Comte – in der Absicht ein gewiss unlösbares Problem zu nennen –, daß es der Wissenschaft nie gelingen würde, das Geheimnis der chemischen Zusammensetzung der Himmelskörper zu ergründen. Wenige Jahre später wurde durch die Spektralanalyse durch Kirchhoff und Bunsen dieses Problem gelöst, und heute können wir sagen, daß wir die entferntesten Sterne als wichtigste physikalische und chemische Laboratorien in Anspruch nehmen, wie wir solche auf der Erde gar nicht finden. Der wahre Grund, warum es Comte nicht gelang, ein unlösbares Problem zu finden, besteht meiner Meinung nach darin, daß es ein solches gar nicht gibt.“<ref>David Hilbert: Naturerkennen und Logik. Naturwissenschaften 1930, S. 959–963 (auch veröffentlicht in: Gesammelte Abhandlungen Bd. 3, S. 378) digitalisierter Volltext</ref>

Oder in anderen Worten:

„Diese Überzeugung von der Lösbarkeit eines jeden mathematischen Problems ist uns ein kräftiger Ansporn während der Arbeit; wir haben in uns den steten Zuruf: Da ist das Problem, suche die Lösung. Du kannst sie durch reines Denken finden; denn in der Mathematik gibt es kein Ignorabimus.“<ref name="Probleme"/>

Hilbert plädiert damit für einen Optimismus in der Forschung, der selbstgesetzte Beschränkungen des Denkens ablehnt. Das Motto findet sich auch als Epitaph auf seinem Grabstein:

„Wir müssen wissen.
Wir werden wissen.“

Würdigung

Nach David Hilbert sind folgende mathematische Begriffe, Objekte oder Sätze benannt:

Außerdem sind der Mondkrater Hilbert und der Asteroid Hilbert nach dem Mathematiker benannt.<ref>ssd.jpl.nasa.gov: 12022 Hilbert (1996 XH26), Zugriff am 3. Juli 2010</ref>

Im Jahre 1906 erhielt Hilbert die Cothenius-Medaille der Deutschen Akademie der Naturforscher Leopoldina<ref>Preisträger der Cothenius-Medaille von 1864 bis 1953. Leopoldina, abgerufen am 2. Mai 2013.</ref>; im Jahr 1932 wurde Hilbert zum Mitglied der Leopoldina gewählt.

Schriften

Literatur

  •  Dietmar Dath: Höhenrausch. Die Mathematik des 20. Jahrhunderts in zwanzig Gehirnen. Eichborn, Frankfurt a. M. 2003, ISBN 3-8218-4535-X, S. 29–48 (biographischer Essay).
  • Apostolos Doxiadis, Christos H. Papadimitriou: Logicomix - Eine epische Suche nach der Wahrheit, Süddeutsche Zeitung Bibliothek, 2012, ISBN 978-3-86497-004-7
  • Hans Freudenthal: Hilbert, David. In: Neue Deutsche Biographie (NDB). Band 9, Duncker & Humblot, Berlin 1972, ISBN 3-428-00190-7, S. 115–117 (Digitalisat).
  • Rudolf Larenz: Der Wille zum widerspruchsfreien Wissen. Zum 150. Geburtstag von David Hilbert In: Die Tagespost, Würzburg, 21. Januar 2012, Seite 10.
  • Jules Leveugle: La Relativité, Poincaré et Einstein, Planck, Hilbert. Paris 2004
  • Hermann Minkowski: Briefe an David Hilbert. Herausgegeben von L. Rüdenberg und H. Zassenhaus. Springer-Verlag, Berlin & Heidelberg 1973, ISBN 3-540-06121-5
  • Constance Reid: Hilbert. Springer Verlag, 2. Aufl. 1972, ISBN 0-387-04999-1, ISBN 3-540-04999-1
  • Constance Reid: Hilbert. Copernicus Books, New York 1996, ISBN 0-387-94674-8 (maßgebliche Hilbert-Biographie).
  • Kurt Reidemeister (Hrsg.): Hilbert – Gedenkband. Springer, Berlin, Heidelberg & New York 1971, ISBN 3-540-05292-5
  • Klaus P. Sommer: Wer entdeckte die Allgemeine Relativitätstheorie? Prioritätsstreit zwischen Hilbert und Einstein. In: Physik in unserer Zeit. Band 36(5), S. 230–235, 2005.

Weblinks

Commons Commons: David Hilbert – Sammlung von Bildern, Videos und Audiodateien
Wikisource Wikisource: David Hilbert – Quellen und Volltexte

Einzelnachweise

<references />

24px Dieser Artikel wurde am 11. Juni 2008 in dieser Version in die Liste der lesenswerten Artikel aufgenommen.