Digital Light Processing
- DLP.Chip.jpg
Mikrospiegelarray (DLP-Chip) von Texas Instruments im Gehäuse
- SMD.back.jpg
Rückseite des Gehäuses mit Anschlusskontakten
Digital Light Processing (DLP, englisch) ist eine von dem US-Unternehmen Texas Instruments (TI) entwickelte und als Marke registrierte Projektionstechnik, bei der Bilder erzeugt werden, indem ein digitales Bild auf einen Lichtstrahl aufmoduliert wird. Dabei wird der Lichtstrahl durch eine rechteckige Anordnung von beweglichen Mikrospiegeln in Pixel zerlegt und dann pixelweise entweder in den Projektionsweg hinein oder aus dem Projektionsweg hinaus reflektiert.
Das Herzstück dieser Technik, das Bauteil, das die rechteckige Anordnung (Matrix) von Spiegeln und deren Ansteuerungstechnik enthält, wird als DMD – Digital Micromirror Device (zu deutsch etwa „Digitale Microspiegel Einheit“) bezeichnet.
Im Gegensatz zu anderen Verfahren, bei denen ein reales Bild oder ein realer Gegenstand unmittelbar auf optischem Wege abgebildet wird, wird hier – ähnlich wie bei der Laserprojektion – das Bild optisch erst innerhalb des Projektionsweges erzeugt. Deshalb handelt es sich streng genommen nicht um eine Projektion wie sie in der physikalischen Optik definiert wird.
DLP findet beispielsweise für Videoprojektoren und Rückprojektionsbildschirme im Heimkino- und Präsentationsbereich Verwendung; und unter der Bezeichnung „DLP-Cinema“ im Digitalkino-Bereich. DLP wird aber auch im industriellen Bereich für generative Fertigung/Additive Manufacturing eingesetzt.<ref>Andreas Gebhardt: Generative Fertigungsverfahren. München 2013, ISBN 978-3-446-43651-0, S. 115, 135.</ref>
Die Technik wurde an verschiedene Hersteller lizenziert.<ref>Texas Business Plano Cinema Firm To Open Theater With Digital Projection, Self-Serve Snacks. TexasBusiness.com, 25. Oktober 2010, abgerufen am 24. Oktober 2011 (english). </ref>
Inhaltsverzeichnis
Digital Micromirror Device
Zentrales Bestandteil von DLP-Projektoren ist ein Digital Micromirror Device (DMD) genanntes Mikrosystem. Dabei handelt es sich um einen Spatial Light Modulator, (SLM dt. Flächenlichtmodulator). Dieser besteht aus matrixförmig angeordneten Mikrospiegelaktoren, das heißt verkippbar spiegelnden Flächen mit einer Kantenlänge von etwa 16 µm. Die Bewegung wird durch die Kraftwirkung elektrostatischer Felder hervorgerufen. Jeder Mikrospiegel lässt sich in seinem Winkel einzeln verstellen und besitzt in der Regel zwei stabile Endzustände, zwischen denen er innerhalb einer Sekunde bis zu 5000 mal wechseln kann. Die Anzahl der Spiegel entspricht der Auflösung des projizierten Bilds, wobei ein Spiegel ein oder mehrere Pixel darstellen kann. Seit 2010 sind DMD-Chips mit Auflösungen bis zu 4096 × 2160 Pixel (4K) erhältlich.
Seit der Einführung der DMD-Technik war ein wichtiger Aspekt der Weiterentwicklung der Technik, neben einer Erhöhung der Auflösung eine Verbesserung des Kontrastes. Hierzu wurden bis ca. 2002 insbesondere zwei Verbesserungen entwickelt, die als „small rotated via“ (SRV) und „small mirror gap“ (SMG) bezeichnet werden. Der Via ist die Röhren-Struktur, die die Spiegel mit dem Unterbau verbindet. Hier hat eine Verkleinerung dieses hohlen Bauteils zu weniger Reflexionen/Streulicht und damit zu einer 50-prozentigen Verbesserung des Kontrastes geführt. Das zwischen die Spiegel fallende und vom Unterbau reflektierte Licht konnte durch eine Verkleinerung der Abstände zwischen den Spiegel mittels SMG reduziert werden (30 % Kontraststeigerung), was zugleich das Füllverhältnis verbesserte. Schließlich wurde eine neue, anorganische Beschichtung des metallischen Unterbaus namens „Dark Metall 3“ eingeführt.<ref></ref> Mit diesem Ansatz kann ein helleres Bild erzeugt werden. Als weitere Vorteile werden Verbesserungen bei der Schärfe (wohl wegen Wegfall schräger Strahlen), Kontrast (Wegfall von Streulicht) und Farbumfang (reinere Grundfarben bei Lasern) angegeben.<ref>[14]</ref> Eine Markteinführung könnte bis 2015 stattfinden, wobei derzeit die Kosten für Kinobetreiber noch zu hoch sind und regulatorische Probleme sowie Probleme mit "Sprenkeln" im Bild zu lösen sind.<ref>[15]</ref>
Vor- und Nachteile / Artefakte
Dank des direkteren Lichtweges im Vergleich zur LCD-Technik und der fehlenden Polarisation des Lichts werden höhere Ausgangslichtleistungen erreicht als bei einem LCD-Projektor. Vergleicht man das Bild eines DLP-Projektors mit dem eines LCD-Projektors, fällt einem die weichere Rasterung des Bildes auf, was sich positiv auf den Eindruck auswirkt. Dank des großen Neigungswinkels der Mikrospiegel werden hohe Kontrastwerte erzielt. Zudem schaltet die DLP-Technik im Bereich von Mikrosekunden, sodass Nachzieheffekte vermieden werden. Dies macht sich vor allem im Stereo-3D-Betrieb bemerkbar, bei dem dank der schnellen Umschaltung keine „Geisterbilder“ (Übersprechen zwischen linkem und rechtem 3D-Bild) erzeugt werden.
In dunklen Bildbereichen können DLP-Projektoren ein Rauschen zeigen, das „wie ein feiner Fliegenschwarm“ wirkt, und das durch unterschiedliche zeitliche Ansteuerung der einzelnen Spiegel verursacht wird.<ref>[16]</ref>
Ältere Ein-DMD-Chip-Projektoren zeigen an kontrastreichen Übergängen (meist schwarz-weiß) aber einen Regenbogeneffekt, vor allem wenn sich die Bilder rasch ändern oder die Augen rasch über das Bild schweifen. Dabei werden die Grundfarben des Farbrades an den Konturen des Objekts sichtbar, was auf viele Betrachter sehr störend wirken kann. Diesen Effekt kann man noch deutlicher erkennen, wenn man seine Hand in den Strahlengang streckt, die Finger spreizt und hin- und herbewegt.
Die Hersteller versuchen diesen Effekt dadurch zu reduzieren, dass Farbräder mit mehr als drei Segmenten beziehungsweise mit höherer Drehzahl verwendet werden. Geräte, die anstelle eines Farbrads drei Sätze verschiedenfarbiger LEDs verwenden, sollten aufgrund der bei LEDs möglichen höheren Schaltgeschwindigkeit zum Farbwechseln keinen Regenbogeneffekt mehr zeigen. Ein Test im Jahre 2011 zeigte allerdings bei einer Reihe von LED-DLP-Projektoren immer noch "deutlich wahrzunehmende" Regenbogeneffekte.<ref>c't Magazin für Computertechnik, 24/2011, S. 98; ISSN 0724-8679</ref>
Bei 3D-Projektoren (die die Bilder für das linke und das rechte Auge abwechselnd hintereinander projizieren) ist die Fähigkeit zum schnelleren Umschalten zwischen Bildern im Vergleich zu LCD- und LCoS-Projektoren von Vorteil, da damit ein Übersprechen der Bilder (wobei ein Auge zumindest einen Teil des Bildes sieht, das für das andere Auge bestimmt ist) vermieden werden kann. Übersprechen kann allerdings immer noch durch die verwendeten Shutter-Brillen auftreten.<ref>[17]</ref>
Lebensdauer
Im Gegensatz zu der LCD-Technik sind die DLP-Projektoren weniger bis gar nicht von verblassenden und einbrennenden Farben betroffen. Das Farbrad, das sich ständig während der Projektion dreht, hat eine Standzeit von ca. 20.000 Stunden – dies jedoch nicht, weil die Farben verblassen, sondern aufgrund der Motoren, deren Lebensdauer durch die Lager begrenzt sind. Hingegen sind die LCD-Panels bzw. die Polarisationsfilter von LCD-Projektoren schon nach 4.000 bis 6.000 Stunden verblasst und nicht mehr für den Einsatz geeignet. Dadurch, dass eine geringere Lichtstärke benötigt wird, besitzen auch die Leuchtmittel der DLP-Projektoren eine Lebensdauer von bis zu 6.000 Stunden, nach denen sie ausgewechselt werden müssen.
Siehe auch
- LCoS: spiegelnder Flüssigkristall-Chip
- Grating Light Valve: Bilderzeugung durch Beugung auf einem Chip
Weblinks
- Webseite von Texas Instruments über die DLP-Technologie (deutsch)
- Einführung in die DMD-Technologie von Texas Instruments (englisch; PDF; 616 kB)
- Cinefreaks – DLP im Kino
Einzelnachweise
<references />