Leitungsschutzschalter
Ein Leitungsschutzschalter, kurz LS-Schalter, umgangssprachlich auch Sicherungsautomat oder kurz Automat, bzw. Sicherung genannt, ist eine Überstromschutzeinrichtung in der Elektroinstallation und wird in Niederspannungsnetzen eingesetzt. Er schützt Leitungen vor Beschädigung durch Erwärmung infolge zu hohen Stroms. Der Leitungsschutzschalter ist ein wiederverwendbares, nicht selbsttätig rückstellendes Sicherungselement. Erfunden wurde er im Jahr 1924 in der Firma von Hugo Stotz in Mannheim.
Eine Kombination aus einem Leitungsschutzschalter mit einem Fehlerstrom-Schutzschalter wird als RCBO (englisch Residual current operated Circuit-Breaker with Overcurrent protection) bezeichnet.
Inhaltsverzeichnis
Allgemeines
Wie eine Schmelzsicherung oder ein Leistungsschalter können sie den Stromkreis bei Überlast und Kurzschluss selbsttätig abschalten. Nicht einstellbare Leistungsschalter werden gemäß aktueller Normen als Leitungsschutzschalter (LS) bezeichnet und werden in diesem Artikel behandelt.
Für Deutschland gilt bei Neuinstallation (nach den TAB in Verbindung mit DIN 18015-1):
- Im Stromkreisverteiler von Wohnungen dürfen für Beleuchtungs- und Steckdosenstromkreise nur Leitungsschutzschalter verwendet werden. Schmelzsicherungen sind nur noch zulässig für fest angeschlossene Geräte (z. B. Durchlauferhitzer) oder als Vorsicherung für Unterverteilungen.
- Zur Absicherung im Vorzählerbereich werden selektive Leitungsschutzschalter (SLS) verwendet. NH-Sicherungen sind in diesem Anwendungsbereich nur dann zulässig, wenn eine andere „laienbedienbare Freischaltmöglichkeit der Kundenanlage“, z. B. als Nachzählersicherung mit einem Neozed-Lasttrenner, gegeben ist.
Funktionsweise
(1) Schalthebel
(2) Freiauslösung
(3) Schaltkontakt
(4) Anschlussklemme
(5) Bimetallstreifen (thermische Auslösung)
(6) Kalibrierung der thermischen Auslösung
(7) Elektromagnetische Auslösung
(8) Deionkammer zur Lichtbogenlöschung
Der Abschaltmechanismus kann auf vier Arten ausgelöst werden:
- Auslösung bei Überlast
- Wenn der vorgegebene Nennwert des durch den Leitungsschutzschalter fließenden Stromes längere Zeit erheblich überschritten wird, erfolgt die Abschaltung. Die Zeit bis zur Auslösung hängt von der Stärke des Überstroms ab; bei hohem Überstrom ist sie kürzer als bei geringer Überschreitung des Nennstromes. Zur Auslösung wird ein Bimetall verwendet, das sich bei Erwärmung durch den durchfließenden Strom verbiegt und den Abschaltmechanismus auslöst (thermische Auslösung).
- Elektromagnetische Auslösung bei Kurzschluss
- Tritt in einer Anlage ein Kurzschluss auf, erfolgt die Abschaltung innerhalb weniger Millisekunden durch einen vom Strom durchflossenen Elektromagneten.
- Manuelle Auslösung
- Für Wartungsarbeiten oder zur vorübergehenden Stilllegung können Stromkreise am Leitungsschutzschalter manuell abgeschaltet werden. Dazu befindet sich ein Kippschalter oder ein Auslöseknopf auf der Frontseite.
- Auslösung durch Zusatzmodule
- Für die meisten Leitungsschutzschalter namhafter Hersteller gibt es neben Hilfsschaltern auch ansteckbare Unterspannungs- und Arbeitsstromauslöser, FI-Schalter, Störlichtbogen-Schutzeinrichtungen (AFDD) und motorische Antriebe (Wiedereinschaltgeräte), mit deren Hilfe der Leitungsschutzschalter geschaltet werden kann. Die Zusatzmodule werden je nach Leitungsschutzschalter rechts oder links angesteckt.
Freiauslösung
Ein wichtiges Merkmal von Leitungsschutzschaltern ist die unbeeinflussbare Freiauslösung. Sie stellt sicher, dass bei Kurzschluss eine sofortige Auslösung auch dann erfolgt, wenn der Schalthebel betätigt oder in der Ein-Stellung festgehalten wird.
Nach Überlastauslösung muss der Bimetallstreifen erst abgekühlt sein, bevor ein Wiedereinschalten möglich ist. Dadurch, dass sie durch eine manuelle Schalthandlung wieder eingeschaltet werden müssen, wird der Anwender auf einen möglichen Fehler aufmerksam gemacht.
Auslösecharakteristik
Man unterscheidet Leitungsschutzschalter neben Nennstrom und Bauform nach der Auslösecharakteristik.
Charak- teristik |
Bemerkung | Auslösestrom (Mehrfaches des Nennstroms) | ||
---|---|---|---|---|
Überlastauslöser (thermisch) | Kurzschluss- auslöser (magnetisch) | |||
AC 50 Hz | DC | |||
A | Siemens (nicht genormt); Halbleiterschutz; hohe Netzimpedanz | 1,13–1,45 [30 °C, 1 Stunde] (über 63 A: 2 Std.) |
2–3 | × 1,5 |
B | Standard-Leitungsschutz | 3–5 | ||
C | für höheren Einschaltstrom (Maschinen, Lampengruppen), Standard-Leitungsschutz in Italien | 5–10 | ||
D | stark induktive oder kapazitive Last: Transformatoren, Magnete, Kondensatoren | 10–20 | ||
E | „Exakt“, SLS Hauptleitungsschutzschalter | 1,05–1,2 [30 °C, 2 Stunden] |
5–6,25 | |
Z | Halbleiterschutz; hohe Netzimpedanz |
Leistungsschalter nach EN 60947-2 (VDE 0660-101) 1,05–1,2 |
2–3 | × 1,5 |
R | Moeller; „rapid“, veraltet; identisch mit Z | |||
K | „Kraft“, hoher Einschaltstrom, sensible Überlastauslösung | 8–14 | ||
S | Moeller (nicht genormt); „Steuertransformatoren“; ähnlich D | 13–17 | ||
H | „Haushalt“, bis ca. 1977; ähnlich A, Ersatztyp: B | 1,5–2,1 (bis 4 A) 1,5–1,9 (6–10 A) 1,4–1,75 (12–25 A) 1,3–1,6 (über 25 A) [25 °C, 1 Stunde] |
2–3 | 3–5 |
L | „Leitungsschutz“ (ursprünglich „Licht“), bis 1990; Ersatztyp: B; als Schraubautomat noch genormt |
ca. 3,5–5 | max. 8 | |
U | „universal“, bis ca. 1993 (z.B. ABB, Moeller, Schrack); oft in Österreich, Vorläufer: HG; Ersatztyp: C | 5,5–12 | ||
U | zweite Variante (seltener, z.B. AEG): Überlastauslösung ähnlich G | 1,05–1,35 [1 Stunde] | 6–10 | × 1,5 |
G | „Geräteschutz“ (international „general“), veraltet; Ersatztyp: C |
Die beiden Werte für Überlastauslösung bezeichnen jeweils den Nichtauslösestrom (kleiner Prüfstrom) und den Auslösestrom (großer Prüfstrom). Die maximale Auslösezeit gilt für den Auslösestrom.
Einige Hersteller geben für die Auslöseströme bei Überlast und Kurzschluss engere Toleranzen an.
Die aktuell genormten Typen B, C, D, E, K und Z sind in der Tabelle hervorgehoben.
In der Regel werden in Wohn- oder Büroräumen Leitungsschutzschalter der Charakteristik B eingesetzt. Die C-Charakteristik wird für Leitungen zu Verbrauchern mit hohem Einschaltstrom verwendet (Leitungs- und Geräteschutz).
Leitungsschutzschalter mit Charakteristik B sind standardmäßig für folgende Bemessungsströme verfügbar:
6 | 10 | 13 | 16 | 20 | 25 | 32 | 40 | 50 | 63 | 80 | 100 | 125 Ampere.
Herstellerabhängig sind auch andere Werte lieferbar. Typ C- und D- sowie Typ K- und Z- Leitungsschutzschalter gibt es in größerer Typenvielfalt mit Werten bis weit unter 1 A.
Die H-Charakteristik wurde seit den 1950er Jahren für Haushaltsstromkreise eingesetzt, um bei Kurzschluss in Netzen mit hoher Impedanz oder bei Schutzerdung zuverlässig Schnellauslösung zu erreichen.
Bei den heutigen Netzverhältnissen kann die empfindliche Kurzschlussauslösung unerwünscht ansprechen. Betroffen sind z.B. Verbraucher mit Schaltnetzteil (Computer, Fernseher) oder Motoren (Staubsauger). In solchen Fällen ist der Austausch durch B-Leitungsschutzschalter empfehlenswert. H10A kann üblicherweise durch B13 ersetzt werden (gleiche Überlastcharakteristik).
Besonderes Augenmerk ist bei der Auswahl von Leitungsschutzschaltern bei der Absicherung von elektronischen Verbrauchern (EVG, Schaltnetzteile) nötig, da deren hohe Einschaltströme zu beachten sind.
Auslösung bei Kurzschluss
Leitungsschutzschalter müssen hohe Kurzschlussströme abschalten können. Die Abschaltvermögen, als Bemessungs-Kurzschluss-Ausschaltvermögen Icn bezeichnet, sind wie folgt abgestuft:
Abschaltvermögen (230/400 V AC 50 Hz) |
Bemerkung |
---|---|
3000 A | In Deutschland und Österreich nicht zugelassen |
4500 A | Standard in Italien für einphasige Abnehmer |
6000 A | Mindestwert in Deutschland (nach TAB) und Österreich. Standard für Wohn- und Bürogebäude, Kleingewerbe |
10000 A | Standard in Industrieanlagen |
15000 A | gehobener industrieller Standard, für Sonderfälle |
25000 A | Hochleistungsautomaten und selektive LS-Schalter |
3
Kennzeichnung:
Schaltvermögen,
Energiebegrenzung
Daneben gibt es Anforderungen an die Kurzschlussstrombegrenzung. In Deutschland gilt nach TAB für Leitungsschutzschalter bis 32 A die Energiebegrenzungsklasse 3 (Selektivitätsklasse 3, „hohe Anforderungen“).
Im Kurzschlussfall ist der nur durch die Netzimpedanz (Innenwiderstand) bestimmte Strom („prospektiver Kurzschlussstrom“) sehr hoch. Der Leitungsschutzschalter begrenzt den Kurzschlussstrom konstruktionsbedingt auf einen niedrigeren Wert.
Eine hohe Energiebegrenzung bewirkt eine hohe Selektivität zu vorgeschalteten Schmelzsicherungen und schützt die Anlage vor elektromagnetischen Einwirkungen.
Bauform
Leitungsschutzschalter haben ein Kunststoffgehäuse. Ältere Ausführungen waren zylindrisch und wurden anstelle der bis dahin üblichen Schraubsicherungen in die Edison-Schraubgewinde eingesetzt oder mit einer dünnen Metallschiene verschraubt. Moderne Leitungsschutzschalter haben rechteckige Gehäuse und können dicht nebeneinander auf eine Tragschiene (Hutschiene) montiert werden.
Einpolige Leitungsschutzschalter sind heute meistens 1 Teilungseinheit (TE) breit.
- Teilungseinheit
- 1 TE = 17,5 … 18 mm (herstellerabhängig)
Zweipolige Ausführungen werden mit 2 TE, 1,5 TE oder auch 1 TE Breite hergestellt. Drei- und vierpolige Automaten sind entsprechend breiter. Daneben gibt es auch Leitungsschutzschalter mit 1,5 TE Breite pro Pol. Meist sind dies solche für Nennströme von 80 A – 125 A und/oder mit sehr hohem Abschaltvermögen. Die selektiven Leitungsschutzschalter sind 1,5 TE breit, ältere Typen 2 TE. Sie werden auf einer Sammelschiene montiert (40 mm Schienenmittenabstand). Alternativ werden die selektiven Leitungsschutzschalter auch auf normalen Hutschienen montiert, sie passen jedoch nicht in herkömmliche Kleinverteiler.
Falls der Leitungsschutzschalter auch den Neutralleiter schaltet, muss der Kontakt für den Neutralleiter verzögert öffnen und voreilend schließen.
Normen und Standards
- DIN VDE 0100-430: Errichten von Niederspannungsanlagen – Teil 4-43: Schutzmaßnahmen – Schutz bei Überstrom
- DIN EN 60898-1 (VDE 0641-11): Elektrisches Installationsmaterial – Leitungsschutzschalter für Hausinstallationen und ähnliche Zwecke, Teil 1: Leitungsschutzschalter für Wechselstrom (AC)
Fachliteratur
- Günter Springer: Fachkunde Elektrotechnik. 18. Auflage, Verlag – Europa – Lehrmittel, Wuppertal 1989, ISBN 3-8085-3018-9
- Theodor Schmelcher: Handbuch der Niederspannung, Projektierungshinweise für Schaltgeräte Schaltanlagen und Verteiler. 1. Auflage, Siemens Aktiengesellschaft (Abt. Verlag), Berlin und München 1982, ISBN 3-8009-1358-5
- Ernst Hörnemann, Heinrich Hübscher: Elektrotechnik Fachbildung Industrieelektronik. 1. Auflage. Westermann Schulbuchverlag GmbH, Braunschweig 1998, ISBN 3-14-221730-4
- Alfred Hösl, Roland Ayx, Hans Werner Busch: Die vorschriftsmäßige Elektroinstallation, Wohnungsbau-Gewerbe-Industrie. 18. Auflage, Hüthig-Verlag, Heidelberg 2003, ISBN 3-7785-2909-9
- Datenblatt Leistungsschutzschalter von ABB (für Auslösecharakteristik): Auslöse-Charakteristiken für Sicherungsautomaten im Vergleich (PDF; 263 kB)
- Technischer Anhang Schupa Auslösekennlinien Leitungsschutzschalter (PDF; 316 KB)
- Datenblatt SLS von Möller (für Auslösecharakteristik von SLS) Selektiver Hauptleitungsschutzschalter LSHU-KL (PDF; 1,9 MB)