Polytänchromosom


aus Wikipedia, der freien Enzyklopädie
Wechseln zu: Navigation, Suche
Datei:Flemming1882Tafel1Fig14.jpg
Polytänchromosomen in einer Speicheldrüsenzelle von Chironomus sp.
Datei:Drosophila polytene chromosomes 2.jpg
Präparierte Polytänchromosomen von Drosophila
Datei:Chironomus riparius polytene chromosomes.jpg
Chironomus riparius Meigen 1804, synonym C. thummi Kieffer 1911: Polytäner Chromosomensatz (1 n = 4) aus stark endorepliziertem Zellkern einer larvalen Speicheldrüse. L = linker Chromosomenarm, R = rechter Arm, N = Nukleolus, BR = Balbiani Ring. Vgl. Keyl & Keyl 1959<ref>Hans-Guenther Keyl, Ilse Keyl: Die cytologische Diagnostik der Chironomiden. I: Bestimmungstabelle für die Gattung Chironomus auf Grund der Speicheldrüsen-Chromosomen. In: Archiv für Hydrobiologie 56, 1959, S. 43–57.</ref>

Als Polytänchromosom wird ein Chromosom bezeichnet, das viele parallel verlaufende, einzelne DNA-Moleküle (Chromatiden) mit jeweils identischen Gensequenzen enthält. <ref> Thomas D. Pollard, William C. Earnshaw: Cell Biology. 2. Auflage. Spektrum Akademischer Verlag, Berlin, Heidelberg 2007, ISBN 978-3-8274-1861-6, S. 221.</ref> Polytänchromosomen sind meist viel größer als "normale" mitotische Chromosomen und im Lichtmikroskop schon bei mäßiger Vergrößerung zu erkennen. Sie werden daher auch Riesenchromosomen genannt, eine Bezeichnung, die manchmal auch für die anders aufgebauten Lampenbürstenchromosomen verwendet wurde<ref> Rüdiger Wehner, Walter Gehring, Alfred Kühn: Zoologie. 24. Auflage. Georg Thieme Verlag, Stuttgart 2007, ISBN 978-3-13-772724-8, S. 41 (online bei Google Books).</ref>. Voraussetzung für die Polytänisierung ist Endoreplikation. Bei diesem Vorgang multipliziert die chromosomale DNA über mehrere Runden innerhalb eines Zellkerns; deswegen kommt es auch zu keiner Zellteilung.

Morphologie

Die Chromatiden eines Polytänchromosoms liegen mit den entsprechenden DNA-Sequenzen eng und exakt ausgerichtet aneinander. Dichter gepackte Bereiche des Euchromatins erscheinen als „Banden“, getrennt von „Interbanden“. Noch dichtere Bereiche bilden das Heterochromatin.<ref>Emil Heitz: Über totale und partielle somatische Heteropyknose bei Drosophila funebris. In: Zeitschrift für Zellforschung und mikroskopische Anatomie. 19/1933, S. 720–742.</ref> Aufgrund des Bandenmusters, das jedes individuelle Polytänchromosom charakterisiert, hat man schon frühzeitig Chromosomenkarten erstellt.<ref>Theophilus Shickel Painter: A new method for the study of chromosome aberrations and the plotting of chromosome maps. In: Genetics. 19/1934, S. 175–188.</ref><ref>Calvin Bridges: Salivary chromosome maps. With a key to the banding of the chromosomes of Drosophila melanogaster. In: Journal of Heredity. 26/1935, S. 60–64.</ref> Bei jenen Organismen, die Riesenchromosomen ausbilden, sind die homologen (die einander entsprechenden, von Mutter und Vater erhaltenen) Chromosomen oft bereits in mitotischen Zellen einander paarweise zugeordnet. Dieser Umstand dürfte zur engen Paarung der mütterlichen mit den väterlichen Chromatiden der Riesenchromosomen beitragen. Polytäne Sätze mit völlig oder teilweise gepaarten Homologen zeigen die haploide Chromosomenzahl (1 n).<ref>Emil Heitz, Hans Bauer: Beweise für die Chromosomennatur der Kernschleifen in den Knäuelkernen von Bibio hortulanus L. Cytologische Untersuchungen an Dipteren: I. In: Zeitschrift für Zellforschung und mikroskopische Anatomie. 17/1933, S. 67–82.</ref>

Die Polytänisierung kann zehn oder mehr Replikationsrunden (Endozyklen) aufweisen, wodurch „Kabel“ mit 2048 oder mehr Chromatiden entstehen. Da eine Chromatide eine einzige DNA-Doppelhelix enthält, besitzt ein Satz Riesenchromosomen nach 10 vollständigen Endozyklen einen DNA-Gehalt von 2048 C. Der Wert "C" steht für die artspezifische Genomgröße.

Manche heterochromatischen Bereiche beteiligen sich nicht (oder nur teilweise) an der Polytänisierung, erstmals beschrieben bei Drosophila virilis.<ref>Emil Heitz: Über α- und β-Heterochromatin sowie Konstanz und Bau der Chromomeren bei Drosophila. In: Biologisches Zentralblatt. 54/1934, S. 588–609.</ref> Diese so genannte Unterreplikation ist durch Vergleich mit mitotischen Metaphasen festzustellen. Siehe „Selektive Endoreplikation“.

Genaktivität

Während der Transkriptionsaktivität kommt es zu einer Auflockerung (Dekondensation), wodurch eine Bande im Lichtmikroskop heller erscheint. Eine solche Region bezeichnet man als Puff.<ref>Claus Pelling: Chromosomal synthesis of ribonucleic acid as shown by the incorporation of uridine labeled with tritium. In: Nature. 184/1959, S. 655–656.</ref> Besonders große Puffs werden nach ihrem Entdecker Édouard-Gérard Balbiani (1823–1899) als Balbiani-Ringe bezeichnet.<ref>Wolfgang Beermann: Control of differentiation at the chromosomal level. In: Journal of Experimental Zoology. 157/1964, S. 49–62.</ref> Die Transkription an Puffs und Balbianiringen bei Chironomus tentans wurde eindrucksvoll mit einem hochauflösenden Rasterelektronenmikroskop dargestellt.<ref>Claus Pelling, Terrence D. Allen: Scanning electron microscopy of poletene Chromosomes, I. In: "Chromosome Research." 1/1993, S. 221–237.</ref> Jene DNA-Sequenzen, von denen die ribosomale RNA abgelesen wird, bilden konstitutionell den Nukleolus, den stets größten Puff eines Zellkerns.<ref>Beermann Wolfgang: Der Nukleolus als lebenswichtiger Bestandteil des Zellkerns. In: Chromosoma. 11/1960, S. 263–296.</ref>

Vorkommen

Besonders große Polytänchromosomen finden sich in den Speicheldrüsen der Larven mancher Insektenarten wie der Zuckmücke (Chironomus sp.), wo sie Balbiani 1881 erstmals beschrieb. Am Hamburger Botanischen Institut gelang Emil Heitz und Hans Bauer 1933 mit der Gartenhaarmücke der Nachweis: Die riesigen "Kernschleifen" in den übergroßen Zellkernen sind tatsächlich 1 n = 5 Chromosomen. Am bekanntesten sind die 1 n = 4 Riesenchromosomen der Fruchtfliege Drosophila melanogaster.<ref>Michael Ashburner: Puffing patterns in Drosophila melanogaster and related species. In: Wolfgang Beermann (Hrsg.): Developmental studies on giant chromosomes. Springer, Berlin/ Heidelberg 1972, S. 101–151.</ref> Bei Drosophila-Arten und anderen Zweiflüglern kommen polytäne Chromosomen in Zellkernen auch anderer Gewebe vor (z. B. Borstenbildungszellen, Malpighi-Gefäßzellen, Nährzellen). In Spinndrüsen von Insektenlarven kurz vor und während der Verpuppung findet man ebenfalls polytäne Chromosomen. Die Gene, die für die Seidenproteine kodieren, sind dort wegen der sehr hohen Transkriptionsrate als Balbiani-Ringe zu identifizieren. Riesenchromosomen treten auch bei Springschwänzen (Collembola), bei Wimpertierchen (Ciliophora) und bei einigen Pflanzen in den Suspensorzellen auf. Beim Menschen ermöglichen Trophoblasten-Kerne mit polytänen Chromosomen die Implantation in die Gebärmutter am Beginn einer Schwangerschaft.<ref>Eugenia V. Zybina, Tatiana G. Zybina: Polytene chromosomes in mammalian cells. In: International Review of Cytology. 165/1996, S. 53–119.</ref>

Literatur

Einzelnachweise

<references />