Schüttelrutsche
Die Schüttelrutsche ist ein Fördermittel, das im Bergbau Untertage eingesetzt wurde. Im deutschen Steinkohlenbergbau wurden ab 1920 Schüttelrutschen im Streb zur maschinellen Förderung eingesetzt. Ab Mitte der 1950er Jahre wurde die Schüttelrutsche durch die vollmechanische Gewinnung mittels Kohlenhobel und Kettenkratzerförderer verdrängt und nicht mehr eingesetzt.<ref name="Quelle 1" />
Inhaltsverzeichnis
Aufbau
Die Schüttelrutsche besteht aus einer trapezförmigen Rinne, dem Rutschenstrang, die durch einen Motor hin- und herbewegt wird.<ref name= "Quelle 4" /> Der Rutschenstrang ist aus einzelnen Rutschenschüssen aufgebaut, welche aus bis zu 5 mm starkem Stahlblech (St 37.11) gefertigt sind. Die einzelnen Rutschenschüsse sind in der Regel 3 Meter lang, da diese Länge aufgrund der Stempelabstände in Streb (1 - 1,5 m) vorteilhaft ist. Der flache und trapezförmige Querschnitt hat eine geringere Reibung als muldenförmige oder rechteckige Querschnitte.<ref name= "Quelle 5" /> Die Abmessungen der einzelnen Rutschenprofile sind genormt und werden in vier Größen eingeteilt, dabei betragen die Füllquerschnitte 340, 420, 530, 720 cm2. Kleine oder mittlere Profile haben gegenüber großen Profilen den Vorteil der besseren Ausnutzung, außerdem haben Rutschen mit großen Profilen den Nachteil, dass bei ihnen eine verhältnismäßig große Totlast mitbewegt werden muss.<ref name= "Quelle 4" />
Um die Bewegungskräfte auf den Rutschenstrang zu übertragen, werden spezielle Angriffsrutschen in den Rutschenstrang integriert. Diese Rutschenstücke, an denen die Kraft des Rutschenmotors angreift, sind verstärkt ausgeführt, da sie besonders beansprucht werden.<ref name= "Quelle 5" /> Damit die Angriffsstange des Antriebs variabel befestigt werden kann, sind an der Unterseite der Rutschenrinne mehrfach gelochte Winkeleisen befestigt.<ref name= "Quelle 4" /> Durch die horizontale oder auch vertikale Führung der Angriffsstelle an der Rutsche werden schädliche Krafteinwirkungen durch schief angreifende Angriffsstangen unterbunden. Bei längeren Strecken werden mehrere Schüttelrutschen hintereinander gebaut.<ref name= "Quelle 5" /> Bei mehreren hintereinander geschalteten Rutschensträngen wird für die unteren Rutschen ein größeres Rutschenprofil eingesetzt als für die oberen Rutschen.<ref name= "Quelle 4" />
Rutschenverbindungen
Die Verbindungen der einzelnen Rutschenschüsse unterliegen während des Betriebs wechselnden Druck- und Zugbeanspruchungen sowie Erschütterungen.<ref name= "Quelle 5" /> Deshalb müssen sie möglichst starr sein, gleichzeitig müssen sie aber leicht lösbar sein, um das Umlegen der Rutsche zu vereinfachen. Es gibt zwei Arten von Rutschenverbindungen, Schraubenverbindungen und Schnellverbindungen.<ref name= "Quelle 4" /> Die Schraubenverbindung ist die einfachste Rutschenverbindung, die aufgrund des relativ geringen Preises sehr häufig verwendet wurde.<ref name= "Quelle 5" />
Als Schrauben werden Hammerkopfschrauben verwendet, die durch spezielle Ohren gesteckt werden.<ref name= "Quelle 4" /> Diese Ohren sind an der Unterseite des Rutschenbleches angenietet oder angeschweißt. Nachteilig bei der Schraubenverbindung ist, dass das Gewinde der Schrauben durch die Rutschenbewegungen sehr beansprucht wird. Außerdem ist das Öffnen und Schließen der Schrauben sehr zeitaufwändig.<ref name= "Quelle 5" />
Durch Schnellverbindungen werden die Mängel der Schraubverbindung vermieden. Bewährt als Schnellverbindungen haben sich so genannte Zugkeilverbindungen. Bei diesen Schnellverbindungen sind die Rutschenenden mit Laschen versehen. An den Enden der Rutsche ist an den Laschen beidseitig je ein Schwenkbügel angebracht. In den Bügel sind zwei Druckkeile und eine Keilschraube eingebracht. Der Druckkeil und die Keilschrauben bilden zusammen einen Spreizkörper. Wird der Spreizkeil betätigt, werden die Laschen mit dem Schwenkbügel verspannt.<ref name= "Quelle 4" />
Verlagerung
Es gibt drei Methoden der Verlagerung von Schüttelrutschen, Kugelrutschen, Laufradrutschen und Hängerutschen.<ref name= "Quelle 5" />
Die Kugelrutsche war die überwiegend genutzte Bauart, da sie gegenüber der Laufradrutsche entscheidende Vorteile hat. Da die Kugelreibung geringer ist als die Rollenreibung, wird bei der Kugelrutsche die Reibung auf ein Mindestmaß herabgesetzt. Außerdem werden die Kugeln durch Berge- oder Kohlenklein weniger gebremst. Außerdem können sich die Kugeln selbsttätig wieder freiarbeiten.<ref name= "Quelle 4" /> Ein weiterer Vorteil von Kugelrutschen ist die geringere Bauhöhe. Dieses ist besonders bei geringmächtigen Flözen vorteilhaft.<ref name= "Quelle 6" /> Die Kugelrutsche besteht aus der Rutschenrinne und dem Rutschenstuhl, auch Kugelstuhl genannt. Oben am Kugelstuhl ist ein Führungsschlitten angebracht, der wie ein Linearkugellager axiale Bewegungen aufnimmt. Er besteht dabei aus mehreren Winkelstählen, durch die die Kugeln geführt werden.<ref name= "Quelle 5" /> Die Rutschenrinne liegt seitlich in gewissen Grenzen beweglich bzw. lösbar auf dem Führungsschlitten auf, um das Lager von permanenten Querkräften zu entlasten. Die Rinne hat dazu einen Mitnehmer, der in eine Querrille aus zwei Winkeleisen greift.<ref name= "Quelle 4" />
Bei der Laufradrutsche sind an der Unterseite der Rinnen Radachsen befestigt. An diesen Achsen befinden sich gelagerte Räder.<ref name= "Quelle 5" /> Die Räder laufen auf speziellen Tragplatten, an denen zur Spurführung der Räder Flacheisen angeschweißt sind. Laufradrutschen sind für geringmächtige Flöze nur bedingt geeignet. Bei welligem Liegenden kommt es oftmals zu Schwierigkeiten in der Verlagerung der Rutschen. Insbesondere bei tiefer liegenden Stellen kann sich der Rutschenstuhl abheben. Um dieses zu unterbinden, werden seitlich an dem Rutschenstuhl spezielle Führungsstühle angeschraubt. Zur Befestigung des Rutschenstuhls werden die Verbindungsschrauben der Rutschenschüsse durch Löcher im Führungsstuhl hindurchgeführt und mit dem Führungsstuhl verschraubt. Der Führungsstuhl wird mit Stempel gegen das Hangende abgespeist.<ref name= "Quelle 4" /> Durch die waagerechte und senkrechte Führung erzwingt der Führungsstuhl einen ruhigen Gang der Schüttelrutsche.<ref name= "Quelle 5" />
Hängerutschen sind Rutschen, die mit Ketten oder Seilen am Ausbau aufgehängt werden.<ref name="Quelle 2" /> Allerdings konnte sich diese Art der Verlagerung nur in Strecken durchsetzen. Im Streb wurde die Hängerutsche nicht eingesetzt, da die starken seitlichen Pendelbewegungen der Rutsche schwer beherrschbar sind und auf engem Raum ein erhebliches Gefahrenpotential darstellen.<ref name= "Quelle 4" /> Nachteilig ist auch der erhebliche Zeitaufwand beim Rückvorgang der Rutsche, da sämtliche Aufhängungen abgeschraubt werden müssen.<ref name= "Quelle 5" />
Antrieb
Die für den Hingang benötigte Bewegungsenergie kann entweder durch Maschinenkraft oder Schwerkraft erfolgen. Das Schwerkraftverfahren funktioniert nur, wenn ein genügend großes Gefälle von mindestens 15 Gon für den Hingang vorhanden ist.<ref name= "Quelle 4" /> Für den Rückgang ist stets Maschinenkraft mittels Rutschenmotor erforderlich.<ref name="Quelle 3" /> Die Schüttelrutsche kann sowohl mit einem Druckluftmotor als auch mit einem Elektromotor angetrieben werden.<ref name= "Quelle 6" /> Jedoch hat sich im Steinkohlenbergbau der Druckluftmotor aufgrund seiner Einfachheit gegenüber dem Elektromotor durchgesetzt.<ref name= "Quelle 4" />
Antrieb mit Druckluftmotor
Für den Schüttelrutschenantrieb wird ein Kolbenmotor benötigt, der die Rutsche in Hin- und Herbewegungen versetzt.<ref name="Quelle 3" /> Die Antriebe sind mit Hubverstellvorrichtungen ausgerüstet, damit sie je nach Fallwinkel, Förderleistung, Rutschenlänge und Reibung zwischen Fördergut und Rutsche jeweils mit entsprechend kleinem oder größerem Hub arbeiten können.<ref name= "Quelle 4" /> Der Hubkolbenmotor besteht aus einem Zylinderkörper, in dem sich der Kolben bewegt.<ref name= "Quelle 5" /> Seitlich neben der Kolbenstange werden zwei Führungsstangen zur Stabilisierung mitgeführt. Kolbenstange und Führungstangen sind über eine so genannte Angriffsbrücke miteinander verbunden.<ref name= "Quelle 4" /> Die Antriebsmotoren werden in der Regel unter die Rutsche gestellt. Für geringmächtige Flöze werden niedrige Mehrkolbenmotoren, die für einfach- oder doppelwirkende Arbeitsweise einstellbar sind, verwendet.<ref name= "Quelle 5" /> Am meisten verbreitet sind Zwillingsmotoren, die jeweils links und rechts neben der Rutsche montiert werden. Da bei einem Einfallen über 15 Gon nur die Bewegungsenergie für den Rückgang erforderlich ist, genügt hierbei ein einseitig wirkender Rutschenmotor, der die Rutsche nur hochzieht. Bei dieser Antriebsart wird das Gewicht der Rutsche für die Abwärtsbewegung ausgenutzt.<ref name= "Quelle 4" /> Für größere Endgeschwindigkeiten wird der Hub vergrößert oder ein doppelseitig wirkender Motor eingesetzt. Die Leistung des Motors ist im Wesentlichen abhängig vom Zylinderdurchmesser.<ref name="Quelle 3" />
Gegenmotor
Gegenmotoren werden eingesetzt, wenn die Neigung nicht genügend groß ist, um den Hingang der Rutsche selbsttätig zu erwirken.<ref name= "Quelle 4" /> Der Gegenmotor arbeitet gemeinsam mit dem einfach wirkenden Rutschenmotor. Der Gegenmotor wird dabei im unteren Teil der Rutsche montiert, um den Hingang zu bewirken.<ref name= "Quelle 5" /> Der Motor für den Rückgang wird im oberen Teil der Rutsche montiert. Der Rutschenstrang wird zwischen beiden Motoren hin- und hergezogen und dabei ständig auf Zugspannung gehalten. Dadurch werden Wechselbeanspruchungen vermieden.<ref name= "Quelle 4" /> Um sich den vom Hauptmotor ausgeübten Zugwirkungen sinngemäß anzupassen zu können, besitzt der Gegenmotor eine eigene pneumatische Steuerung.<ref name= "Quelle 5" /> Anstelle eines einseitig wirkenden Motors mit Gegenmotor können auch doppelseitig wirkende Motoren verwendet werden. Diese Motoren können im allen Lagerungsverhältnissen eingesetzt werden, die für Schüttelrutschen geeignet sind. Allerdings belasten doppelseitig wirkende Motoren den Rutschenstrang stärker als einfachseitig wirkende Motoren.<ref name= "Quelle 4" />
Motorschmierung
Luftmotoren müssen ständig bei der Bewegung geschmiert werden, damit sie einwandfrei funktionieren.<ref name="Quelle 3" /> Dazu besitzen die Rutschenmotoren einen Ölbehälter, aus dem die Schmierung selbsttätig erfolgt. Die einströmende Druckluft reißt dabei geringe Ölmengen mit. Der Ölbehälter ist so bemessen, dass eine Füllung für eine Schicht ausreichend ist.<ref name= "Quelle 4" />
Antrieb mit Elektromotor
Elektrische Schüttelrutschenantriebe wurden hauptsächlich in Gruben ohne Druckluftnetz eingesetzt.<ref name= "Quelle 5" /> Da der Elektromotor eine reine Drehbewegung ausführt, muss diese Drehbewegung in eine hin- und hergehende Bewegung umgesetzt werden.<ref name= "Quelle 4" /> Dies geschieht in der Regel mit einem Ellipsenantrieb. Dieser Antrieb besteht aus zwei elliptisch geformten Zahnrädern, welche jeweils auf einer im Brennpunkt gelagerten Welle sitzen. An einem der Zahnräder befindet sich eine Kurbelscheibe, an welcher, ebenfalls konzentrisch, die Zugstange befestigt ist.<ref name= "Quelle 5" /> Der Elektromotor treibt das Zahnrad 1 an und versetzt es in ellipsenförmige Bewegung. Über die Zähne des Zahnrades 1 wird das Zahnrad 2 angetrieben. Über die Kurbelscheibe wird die Zugstange in hin- und hergehende Bewegungen versetzt und bewegt dadurch den Rutschenstrang. Andere Bauformen bei elektrischen Rutschenantrieben arbeiten nach dem Prinzip unrunder Räder. Hierbei wird die hin- und hergebende Bewegung über ein Zahnradvorlage erzeugt, das mit Ellipsenrädern ausgerüstet ist. Die Leistungen der Drehstrommotoren sind abhängig von der Größe der Schüttelrutsche und liegen zwischen 15 und 22 KW.<ref name= "Quelle 4" />
Position des Antriebes
Die Aufstellung des Rutschenmotors ist abhängig von der Rutschenlänge.<ref name= "Quelle 5" /> Bei kurzen Rutschen ist das Aufstellen des Rutschenmotors am oberen Ende der Rutsche machbar.<ref name= "Quelle 4" /> Bei längeren Rutschen hat sich die Anstellung am oberen Ende aufgrund der starken Belastung der oberen Rutschenverbindungen nicht bewährt. Auch eine Aufstellung des Antriebes am unteren Rutschenende ist aufgrund der Schwerpunktverlagerung des Rutschenstranges und der daraus resultierenden Schlingerbewegung der Rutsche sehr nachteilig.<ref name= "Quelle 5" /> In der Praxis hat sich das Ende des oberen Drittels als Angriffspunkt bewährt.<ref name= "Quelle 6" /> Damit die Rutschenverbindungen nicht durch die Motorbewegungen überansprucht werden, werden bei längeren Rutschen mehrere Motoren im Abstand von 100 Metern angebaut.<ref name= "Quelle 4" /> Die Motoren können sowohl unterhalb als auch seitlich von der Rutsche aufgestellt werden.<ref name= "Quelle 5" /> Der Einbau unterhalb der Rutsche wird gegenüber dem seitlichen Einbau bevorzugt.<ref name= "Quelle 6" /> Da bei seitlichem Einbau des Motors die Motorleistung abhängig vom Winkel zwischen Rutsche und Angriffsstrang am Angriffspunkt der Rutsche in zwei Komponenten zerfällt, kann somit nicht die volle Motorleistung für den Antrieb der Rutsche genutzt werden. Durch spezielle Doppelstangenangriffe wird dieser Nachteil teilweise kompensiert. Bei elektrischen Antrieben wird der Motor grundsätzlich unter der Rutsche eingebaut.<ref name= "Quelle 4" />
Funktion
Vergleichbar ist die Fortbewegung des Fördergutes mit dem Schaufelwurf.<ref name= "Quelle 5" /> Die Bewegung der Schüttelrutsche besteht aus dem Hingang und dem Rückgang.<ref name= "Quelle 6" /> Bei dem Bewegungsvorgang in Förderrichtung wird dem Fördergut eine bestimmte Bewegungskraft erteilt.<ref name= "Quelle 4" /> Kurz vor Ende des Hingangs wird die Rutschenrinne verzögert und am Ende des Hingangs in der Bewegungsrichtung umgesteuert.<ref name= "Quelle 6" /> Danach wird die Rutschenrinne gegen die Förderverrichtung beschleunigt.<ref name= "Quelle 4" /> Bei dem ruckartigen plötzlichen Rückgang der Rinne rutscht das Fördergut aufgrund der Massenträgheit noch ein Stück weiter in Förderrichtung.<ref name= "Quelle 6" /> Dieser Bewegungsvorgang wird ständig wiederholt.<ref name= "Quelle 5" /> Der Förderweg je Hub hängt von zwei Faktoren ab. Dies sind zum einen die von der Rinne erwirkte Beschleunigung und zum anderen die Reibung zwischen Rinne und Fördergut. Je geringer die Gleitreibung zwischen Rutsche und Fördergut ist und je stärker der Stoß des Antriebes ist, umso größer ist der Förderweg je Hub. Ab einem Einfallswinkel von 27 Gon rutscht das Fördergut ohne eine Bewegung der Rutsche. Man bezeichnet diesen Winkel als kritischen Einfallswinkel.<ref name= "Quelle 4" />
Förderleistung
Die Förderleistung der Schüttelrutsche ist abhängig vom Querschnitt der Rutsche, der Hubzahl des Antriebes und von der Länge des Weges, den das Fördergut auf Rutsche bei jedem Hub zurücklegt.<ref name= "Quelle 5" /> Da das Fördergut vielfach wieder etwas mit zurückgenommen wird, kann die maximale Förderleistung der Rutsche in der Regel nicht erreicht werden. Positiv auf die Förderleistung wirkt sich das Einfallen des Flözes auf die Förderleistung aus.<ref name= "Quelle 4" /> Die Förderleistung je Stunde ist dabei die theoretische Höchstleistung der Schüttelrutsche. Diese Höchstleistung wird jedoch nur zur Berechnung des Antriebes, nicht als Dauerleistung berücksichtigt, da es während des Betriebes durchaus zu Stillständen kommen kann.<ref name= "Quelle 5" />
Einzelnachweise
<references>
<ref name="Quelle 1">Ernst-Ulrich Reuther: Einführung in den Bergbau. 1. Auflage, Verlag Glückauf GmbH, Essen, 1982, ISBN 3-7739-0390-1.</ref> <ref name="Quelle 2">Joachim Huske: Der Steinkohlenbergbau im Ruhrrevier von seinen Anfängen bis zum Jahr 2000. 2. Auflage, Regio-Verlag Peter Voß, Werne, 2001, ISBN 3-929158-12-4.</ref> <ref name="Quelle 3">H. Hoffmann, C. Hoffmann: Lehrbuch der Bergwerksmaschinen (Kraft und Arbeitsmaschinen). 3. Auflage, Springer Verlag OHG, Berlin 1941, S. 384–393.</ref> <ref name= "Quelle 4">Carl Hellmut Fritzsche: Lehrbuch der Bergbaukunde. Erster Band, 10. Auflage, Springer Verlag, Berlin/Göttingen/Heidelberg 1961.</ref> <ref name= "Quelle 5">Fritz Heise, Fritz Herbst: Lehrbuch der Bergbaukunde mit besonderer Berücksichtigung des Steinkohlenbergbaus. Zweiter Band, Fünfte vermehrte und verbesserte Auflage, Verlag von Julius Springer, Berlin 1932, S. 334–362.</ref> <ref name= "Quelle 6">B. W. Boki, Gregor Panschin: Bergbaukunde. Kulturfond der DDR (Hrsg), Verlag Technik Berlin, Berlin 1952, S. 487–492.</ref>
</references>