Subboreal
Serie | Klimastufe | Pollen- zone |
Zeitraum |
---|---|---|---|
Holozän | Subatlantikum | X | 450 v. Chr. bis heute |
IX | |||
Subboreal | VIII | 3.710–450 v. Chr. | |
Atlantikum | VII | 7.270–3.710 v. Chr. | |
VI | |||
Boreal | V | 8.690–7.270 v. Chr. | |
Präboreal | IV | 9.610–8.690 v. Chr. | |
Pleistozän | |||
Jüngere Dryaszeit | III | 10.730–9.700 ± 99 v. Chr. |
Das Subboreal ist in der Erdgeschichte der zweitjüngste Zeitabschnitt des Holozäns in Nordwesteuropa. Es dauerte von 3710–450 v. Chr.<ref name="Holozän">Gliederung des Holozän. Geozentrum Hannover (pdf-Datei, 405 kB)</ref>
Inhaltsverzeichnis
Begriffsbestimmung und stratigraphische Stellung
Der Begriff Subboreal (Lateinisch sub ‚unter, unterhalb, darunter‘ und griechisch Βορέας Boreas ‚Gott des Nordwinds‘), oft auch als Späte Wärmezeit oder Eichenmischwald-Erlenzeit bezeichnet, wurde von Rutger Sernander<ref>R. Sernander: Om växtlämningar i Skandinaviens marina bildningar. In: Bot. Not. 1889. Lund 1889, S. 190-199.</ref> zur Unterscheidung von Axel Blytts Boreal geprägt.<ref>A. BIytt: Immigration of the Norvegian Flora. Alb. Cammermeyer, Christiania (Oslo) 1876a, S. 89.</ref> Das Subboreal folgt auf das unmittelbar vorhergehende Atlantikum und wird seinerseits vom Subatlantikum abgelöst.
Das Subboreal entspricht der Pollenzone VIII von Franz Firbas (1949), X im Schema von Fritz Theodor Overbeck (1975), und IVa und IVb von W. H. Zagwijn.<ref>Waldo Heliodoor Zagwijn: Nederland in het Holoceen. In: Rijks Geologische Dienst Haarlem (Hrsg.): Geologie van Nederland. Deel 1, 46 S., Staatsuitgeverij, 's-Gravenhage 1986.</ref>
Klimastratigraphisch kann das Subboreal in ein Älteres Subboreal und in ein Jüngeres Subboreal unterteilt werden. Es wird entweder dem Mittel-Holozän oder dem Jung-Holozän zugerechnet. Kulturgeschichtlich umfasst das Subboreal den größten Teil des Neolithikums und die gesamte Bronzezeit (Beginn bei 3800 bis 4200 Jahren BP).
Zeitliche Einordnung
<timeline> ImageSize = width:670 height:150 PlotArea = width:580 height:125 left:70 bottom:25 AlignBars = justify
Colors =
id:eisen value:rgb(0.8,0.9,0.8) id:bronze value:rgb(1,0.7,0.2) id:neolith value:rgb(0.6,0.9,0.6) id:mesol value:rgb(0.4,0.7,0.4) id:subatlant value:rgb(0.7,0.7,0.2) id:subbor value:rgb(0.7,0.8,0.8) id:atlant value:rgb(0.9,0.9,0.2) id:boreal value:rgb(0.7,0.886,0.819) id:praebor value:rgb(0.5,0.7,0.8) id:epoche value:rgb(1,1,0.1) id:black value:black id:white value:white
Period = from:-9610 till:1950 TimeAxis = orientation:horizontal ScaleMajor = unit:year increment:2000 start:-8000 ScaleMinor = unit:year increment:500 start:-9500
TextData =
pos:(10,10) textcolor:black fontsize:8 text:Jahre
PlotData =
align:center textcolor:black fontsize:8 #>mark:(line,black) width:25<# shift:(0,-5)
bar:Subepoche #Dapeng Zhou (2005): Jungquartäre Talgeschichte des mittleren Niederrheins from: -9610 till: -7270 color:epoche mark:(line,black) text:Alt-Holozän from: -7270 till: -3710 color:epoche text:Mittel-Holozän from: -3710 till: -2200 color:atlant text: at: -2200 mark:(line,black) from: -2200 till: -450 color:atlant text: from: -450 till: 1950 color:epoche text:Jung-Holozän
bar:Klimastufe #Geozentrum Hannover (Stand: Mai 2004) from: -450 till: 1950 color:subatlant text:Subatlantikum from: -3710 till: -450 color:subbor mark:(line,black) text:Subboreal from: -7270 till: -3710 color:atlant mark:(line,black) text:Atlantikum from: -8690 till: -7270 color:boreal mark:(line,black) text:Boreal from: -9610 till: -8690 color:praebor mark:(line,black) text:Präboreal
bar:Nordsee #Meyers Großes Taschenlexikon in 24 Bänden 1990 (aus Grafik) from: 0 till: 1950 color:subatlant text:Dünkirchen Tr. from: -4000 till: 0 color:subbor text:Meeresrückzug bzw. Stillstand from: -8690 till: -4000 color:atlant text:Flandr. Transgression
bar:Ostsee #Meyers Großes Taschenlexikon in 24 Bänden 1990 from: 600 till: 1950 color:white text:Myameer from: -2200 till: 600 color:eisen text:Lymneameer from: -4800 till: -2200 color:atlant text:Littorinameer from: -7500 till: -4800 color:boreal text:Ancylussee from: -9610 till: -7500 color:praebor text:Yoldia-Meer
bar:Kulturstufe #Geozentrum Hannover Stand: 05.2004 from: 0 till: 1950 color:white text: histor. Zeit from: -800 till: 0 color:eisen text:Eisenzeit from: -2200 till: -800 color:bronze text:Bronzezeit from: -6000 till: -2200 color:neolith text:Neolithikum from: -9000 till: -6000 color:mesol text:Mesolithikum
</timeline>
Bemerkung: Nur die mit einer schwarzen Trennlinie markierten Grenzen sind mehr oder weniger exakt; sie basieren auf Jahresschichten in Seesedimenten in Nord-Zentral-Europa und gelten streng genommen nur für die Klimastufen. Die anderen Grenzen sind unsicher und nicht starr festgelegt. Insbesondere die Grenze zwischen Mittel- und Jungholozän ist sehr variabel. Bei den Kulturstufen ist die regional unterschiedliche Entwicklung zu beachten.
Alter
Die Untergrenze des Subboreals liegt bei 3710 v. Chr. (5660 Jahren BP). Diese Grenze ist jedoch nicht als starr anzusehen. So setzen manche Autoren den Beginn des Subboreals bereits früher bei 6350 Jahren BP (4400 v. Chr.)<ref>C. M. Herking: Pollenanalytische Untersuchungen zur holozänen Vegetationsgeschichte entlang des östlichen unteren Odertals und südlichen unteren Wartatals in Nordwestpolen. Dissertation. Göttingen, Georg-August-Universität 2004.</ref> bzw. in Nordwestpolen bei 6780 Jahren BP (4830 v. Chr.) an<ref>K. Tobolski: Paläoökologische Untersuchungen des Siedlungsgebietes im Lednica Landschaftspark (Nordwestpolen). In: Offa. 47, 1990, S. 109-131.</ref>, andere wiederum rechnen mit nur 5000 Jahren BP (3050 v. Chr.). Es endet bei 450 v. Chr. Die Obergrenze (und damit der Übergang zum Subatlantikum) ist aber ebenfalls nicht starr festgelegt, sondern kann bereits im Zeitraum 1170 bis 830 v. Chr. erfolgen.<ref>S. Jahns: Late-glacial and Holocene woodland dynamics and land-use history of the lower Oder valley, north-eastern Germany, based on two, AMS 14C-dated, pollen profiles. In: Vegetation History and Archaeobotany. 9(2), 2000, S. 111-123.</ref> In Warvenjahren entspricht das Subboreal dem Zeitraum 5660 bis 2750 Jahre BP<ref name=Litt>T. Litt et al.: Vegetation and climate history in the Westeifel Volcanic Field (Germany) during the past 11 000 years based on annually laminated lacustrine maar sediments. In: Boreas. 38, 2009, S. 679–690.</ref>
Die Grenze zwischen Älterem und Jüngerem Subboreal wird meist als 1350 v. Chr. angegeben.
Klimageschichtlicher Verlauf
Das Klima war während des Subboreals im Vergleich zum vorausgehenden Atlantikum trockener und geringfügig kühler (im Durchschnitt um 0,1 K), auch wenn es immer noch wärmer war als heute. So lagen die Temperaturen im Durchschnitt um 0,7 K höher als im jetzigen Subatlantikum. Eine Folgeerscheinung war, dass während des Subboreals die Untergrenze der Gletscher in Skandinavien im Vergleich zum Subatlantikum um 100 bis 200 Meter angehoben war.<ref>S. O. Dahl, A. Nesje: A new approach to calculating Holocene winter precipitation by combining glacier equilibrium-line altitudes and pine-tree limits: a case study from Hardangerjøkulen, central southern Norway. In: The Holocene. 6, 1996, S. 381–398..</ref> Insgesamt gesehen waren die Jahresdurchschnittstemperaturen innerhalb des Subboreals unter mehreren Schwankungen jedoch generell rückläufig (sie kühlten sich langsam um bis zu 0,3 K ab).
Der Beginn des Subboreals wird im Ägäisraum von einer hundertjährigen Dürreperiode markiert, die bei 5600 Jahren BP zentriert ist.<ref>U. Kotthoff et al.: Lateglacial and Holocene vegetation dynamics in the Aegean region: an integrated view based on pollen data from marine and terrestrial archives. In: The Holocene. 18, 7, 2008, S. 1019-1032.</ref> Dieses Ereignis dürfte jedoch in seiner Bedeutung bei weitem vom Ende der Afrikanischen Feuchtigkeitsperiode (engl. African Humid Period) zu diesem Zeitpunkt übertroffen worden sein. So war bei Seen des subtropischen Afrika (wie beispielsweise dem Tschadsee) damals ein rapider Rückgang im Seespiegel zu beobachten.<ref>P. B. de Menocal et al.: Abrupt onset and termination of the African Humid Period: rapid climate responses to gradual insolation forcing. In: Quaternary Science Reviews. 19, 2000, S. 347–61.</ref> Auch im südlichen Mesopotamien machte sich im Zeitraum 6200 bis 5000 Jahre BP eine stärker werdende Aridität breit, welche zu demographischen Umwälzungen führte und möglicherweise das Ende Uruks heraufbeschwor.<ref>D. J. Kennett, J. P. Kennett: Early state formation in southern Mesopotamia: sea levels, shorelines, and climate change. In: Journal of Island and Coastal Archaeology. 1, 2006, S. 67–99.</ref>
In Nordwesteuropa (Eifelmaare) kann ab 5000 Warvenjahren BP ein klimatischer Einschnitt beobachtet werden. Beispielsweise waren die Julitemperaturen während des vorangangenen Holozänen Optimums im Zeitabschnitt 8200 bis 5000 Warvenjahre BP noch durchschnittlich um 1 K höher gelegen. Gekoppelt mit dem Absinken der Sommertemperaturen war jedoch ein Anstieg der Januarmittel und ein Anstieg des Jahresniederschlags.<ref name=Litt></ref>
Der Zeitraum 4700 bis 4100 Jahre BP wird im nördlichen Afrika und im Nahen Osten erneut von anhaltender Trockenheit charakterisiert, unterstrichen durch Seespiegelminima. Der Rückgang der Monsunregenfälle<ref>F. Gasse, E. Van Campo: Abrupt post-glacial events in West Asia and North Africa monsoon domains. In: Earth and Planetary Science Letters. 126, 1994, S. 435–56.</ref> zwischen 4500 und 4000 Jahren BP hat wahrscheinlich die Wirren und schließlich das Ende des Alten Reichs Ägyptens herbeigeführt.<ref>F. Gasse: Hydrological changes in the African tropics since the Last Glacial Maximum. In: Quaternary Science Reviews. 19, 2000, S. 189–211.</ref> Im Gebiet der Levante lief eine sehr ähnliche Entwicklung ab.<ref>Y. Enzel et al.: Late Holocene climates of the Near East documented from Dead Sea level variations and regional winter rainfall. In: Quaternary Research. 60, 2003, S. 263–73.</ref> So dürfte das bei 4200 Jahren BP gelegene Trockenheitsmaximum in Mesopotamien den Niedergang des Akkadischen Reichs ausgelöst haben.<ref>H. Weiss et al.: The genesis and collapse of third millennium North Mesopotamian civilization. In: Science. 261, 1993, S. 995–1004.</ref>
Treibhausgas Kohlendioxid
Das Treibhausgas Kohlendioxid hatte zu Beginn des Subboreals einen holozänen Minimalwert von 260 ppm erreicht. Diese Wert stieg unter leichten Schwankungen dann stetig bis 293 ppm am Ende des Subboreals an.<ref>F. Parrenin, L. Loulergue, E. Wolff: EPICA Dome C Ice Core Timescales. In: World Data Center for Paleoclimatology Data Contribution Series # 2007-083.NOAA/NCDC Paleoclimatology Program. Boulder CO, USA 2007.</ref>
Vegetationsgeschichtliche Entwicklungen
In Skandinavien ist der Übergang zwischen Atlantikum und Subboreal eine anhand der Zusammensetzung der Vegetation scharfe und gut erkennbare Grenze. Der Übergang lässt sich in Westeuropa weniger deutlich fassen. Ein typisches Merkmal ist hier der schnelle Rückgang von Ulmen und Linden als Bestandteile des charakteristischen Eichenmischwaldes (EMW). Die Gründe für den Rückgang bei den Linden sind nicht klar, möglicherweise lag es am kälteren Klima oder an Einflüssen des Menschen. Der Rückgang der Ulmen (so genannter Ulmenfall), der auf eine durch den Ulmensplintkäfer (Scolytus scolytus, Scolytus multistriatus) übertragene Pilzerkrankung durch einen Ascomyceten (Ceratocystis ulmi) zurückzuführen ist, wurde wahrscheinlich zusätzlich durch klimatische Veränderungen und durch anthropogene Nutzung (beispielsweise Schneitelung) gefördert.<ref>S. M. Peglar, H. J. B. Birks: The mid-Holocene Ulmus fall at Diss Mere, South-East England - disease and human impact?. In: Vegetation History and Archaeobotany. 2, 1993, S. 61-68.</ref> Der in Zentral- und Nordeuropa mit ungefähr 4000 v. Chr. datierte Ulmenfall<ref>K.-E. Behre, D. Kucan: Die Geschichte der Kulturlandschaft und des Ackerbaus in der Siedlungskammer Flögeln, Niedersachsen. In: Probleme der Küstenforschung im südlichen Nordseegebiet. 21, 1994, S. 1-227.</ref> (in Eifelmaaren wurde beispielsweise ein Rückgang von 20 auf 4 % beobachtet) dürfte wohl eher diachron verlaufen sein und sich über den Zeitraum 4350 bis 3780 v. Chr. erstreckt haben.<ref>B. Kubitz: Die holozäne Vegetations- und Siedlungsgeschichte in der Westeifel am Beispiel eines hochauflösenden Pollendiagrammes aus dem Meerfelder Maar. In: Dissertationes Botanicae. 339, 2000, S. 106.</ref>
Ein weiteres waldgeschichtliches Ereignis des Subboreals stellt die Einwanderung der Rotbuche (Fagus sylvatica) und der Hainbuche (Carpinus betulus) aus den Refugien der Balkanhalbinsel und südlich des Apennins dar. Auch diese beiden Vorgänge waren diachron - Buchenpollen werden erstmals ab 4340 bis 3540 v. Chr. und Hainbuchenpollen etwas später ab 3400 bis 2900 v. Chr. nachgewiesen. Mit Einsetzen des Jüngeren Subboreals begann dann die eigentliche Ausbreitung der Buchen. Während der Etablierung der Buche und der Hainbuche war unter gleichzeitigem Auftreten von Siedlungszeigern (z. B. Getreidetaxa und Spitzwegerich – Plantago lanceolata) ein Rückgang bei der Hasel zu verzeichnen.
Das trockenere Klima während des Subboreals verursachte außerdem die Verbreitung von Heidekrautgewächsen.
Meeresspiegel
Wie im vorangegangenen Atlantikum stieg auch während des Subboreals der Meeresspiegel weiterhin an. Der Anstieg betrug jetzt jedoch nur noch rund 1 Meter, oder 0,3 Millimeter/Jahr. Am Ende des Subboreals befand sich der Meeresspiegel dann bei 1 Meter unter NN.
Entwicklung im Ostseeraum
Die Ostsee hatte sich bereits vor Beginn des Subboreals zum Littorinameer entwickelt. Im Älteren Subboreal erfolgte die 2. Littorina-Transgression, die 1 Meter unter NN erreichte. Nach der Spätlittorinen Regression kam es dann gegen Ende des Jüngeren Subboreals zur 3. Littorina-Transgression, die bei 60 Zentimeter unter NN lag (und später im beginnenden Subatlantikum den aktuellen Pegelstand ansteuerte).
Entwicklung im Nordseeraum
Im Nordseeraum war es nach der im Atlantikum stattgefundenen Flandrischen Transgression zu Beginn des Suboreals zu einem leichten Meeresspiegelrückgang bzw. zu einem Meeresspiegelstillstand gekommen.
Siehe auch
Einzelnachweise
<references />