Radiologie
Die Radiologie ist das Teilgebiet der Medizin, das sich mit der Anwendung elektromagnetischer Strahlen und mechanischer Wellen zu diagnostischen, therapeutischen und wissenschaftlichen Zwecken befasst.
In den Anfängen der Radiologie wurden ausschließlich Röntgenstrahlen verwendet. Neben den Röntgenstrahlen kommt auch andere Ionisierende Strahlung wie Gammastrahlung oder Elektronen zum Einsatz. Da ein wesentlicher Einsatzzweck die Bildgebung ist, werden auch andere bildgebende Verfahren wie die Sonografie und die Magnetresonanztomographie (Kernspintomographie) zur Radiologie gerechnet, obwohl bei diesen Verfahren keine ionisierende Strahlung zum Einsatz kommt.
Zur Diagnostischen Radiologie gehören als Teilgebiete die Neuroradiologie und die Kinderradiologie. Es gibt weitere Schwerpunkte wie die Interventionelle Radiologie. Von Bedeutung für die fachärztliche Tätigkeit sind auch Fragen des Strahlenschutzes.
Strahlentherapie und Nuklearmedizin sind eng verwandte, aber heute eigenständige Fachgebiete der Medizin.
Inhaltsverzeichnis
Diagnostische Radiologie
Die bildgebenden Verfahren in der diagnostischen Radiologie umfassen die Projektionsradiografie und die Schnittbildverfahren: Röntgen-Computertomographie, Sonographie und Magnetresonanztomographie. Bei all diesen Verfahren können Substanzen eingesetzt werden, die die Darstellung bzw. Abgrenzung bestimmter Strukturen erleichtern oder Aufschluss über die Funktion eines Systems geben. Diese Substanzen bezeichnet man als Kontrastmittel. Die Auswahl des Verfahrens und die Entscheidung, Kontrastmittel einzusetzen, richten sich nach der klinischen Fragestellung und einer Risiko-Nutzen-Abwägung. Die jährlichen Kosten der Strahlendiagnostik sind in Deutschland von etwa 4 Milliarden Euro im Jahr 1992 auf mehr als 7 Milliarden Euro im Jahr 2008 angestiegen.<ref>Statistisches Bundesamt 2010, zitiert nach Apotheken-Umschau, 1. Juli 2010, S. 57</ref>
Radiographie
Bei den radiographischen Verfahren (auch als „konventionelles Röntgen“ bezeichnet) werden Bereiche des Körpers des Patienten aus einer Richtung mit Röntgenstrahlung durchstrahlt. Auf der Gegenseite wird die Strahlung mit geeigneten Materialien registriert und in ein Bild umgewandelt. Dieses zeigt die im Strahlengang liegenden Gewebe in der Projektion: Knochen absorbieren mehr Strahlung als Weichteile und werfen daher Schatten; luftgefüllte Gewebe wie die Lunge sind relativ durchlässig, sodass dahinter eine höhere Strahlenintensität registriert wird. Da verschiedene Strukturen sich meist im Strahlengang überlagern, ist es oft hilfreich, mehrere Bilder aus unterschiedlicher Projektionsrichtung anzufertigen.
Welche Art Sensormaterial zur Registrierung verwendet wird, hängt vom Geräte- und Aufnahmetyp ab. Bei der herkömmlichen Radiographie wird empfindliches Filmmaterial analog zur Fotografie verwendet, das sich bei Strahleneinfall schwärzt und chemisch entwickelt werden muss. Anschließend können die halbtransparenten Abzüge auf einem Leuchtkasten betrachtet werden. Fortentwicklungen dieses Prinzips erlauben anstelle der Entwicklung von Filmmaterial das digitale Auslesen eines Detektors. Das einfachste Prinzip ist dabei eine Leuchtstoffplatte, welche nach der Aufnahme eingescannt wird. Um bewegte Bilder in Echtzeit zu beurteilen (Durchleuchtung) werden traditionell Röntgenbildverstärker als Sensoren verwendet. In modernen Geräten werden zur direkten digitalen Akquisition sowohl von Standbildern als auch von Echtzeit-Bewegtbildern CCDs als Detektor eingesetzt. Radiologische Aufnahmen können in digitaler Form im DICOM-Format gespeichert werden.
Als Kontrastmittel in der Projektionsradiographie eignen sich unlösliche Bariumsalze als Aufschwemmung, Jodverbindungen, Luft und Kohlendioxid. Barium wird gewöhnlich für den Verdauungstrakt verwendet. Lösliche Jodverbindungen und Kohlendioxid eignen sich für die Injektion in Gefäße, Luft kann rektal zur Dickdarmdarstellung appliziert werden.
Im Folgenden sind die wichtigsten Untersuchungen aufgeführt:
- Nativ = ohne Kontrastmittel
- Röntgen Thorax: Übersichtsaufnahme von Herz, Lunge und Brustkorb
- Röntgen Skelett
- Mammografie: Röntgenuntersuchung der Brust
- Mit Kontrastmittel
- Angiographie (Darstellung der Gefäße allgemein)
- Arteriographie (Arterien)
- Phlebographie/Venographie (Venen)
- Lymphographie (Lymphgefäße)
- intravenöse Urographie (harnableitendes System, inkorrekt: i.v.-Pyelogramm)
- retrograde Pyelographie (Iod-Kontrastmittel via Harnleiter ins Nierenbecken appliziert)
- Durchleuchtung
- Kontrastmittel-Breischluckuntersuchung zur Darstellung des Ösophagus
- Kontrastmittel-Mahlzeit zur Verfolgung der Magen-Darm-Passage
- Dünndarm-Kontrastmitteluntersuchung mit Barium und Wasser (Doppelkontrast)
- Dickdarm-Kontrasteinlauf mit Barium, zusätzlich meist Gabe von Luft (Doppelkontrast)
- Kontrastuntersuchungen der Speiseröhre, Magen, Darm, Gallenwege
- Barium-Kontrastmittel (Bariumsulfat, BaSO4) werden nur im Verdauungstrakt verabreicht und dann nur, wenn sichergestellt ist, dass das Kontrastmittel nicht aus dem Verdauungstrakt treten kann. Denn wenn Barium-Kontrastmittel in den freien Körperraum tritt, verkapselt sich dieses und kann zu Entzündungen führen. Wird Barium-Kontrastmittel in die Lunge eingeatmet kann das zu einer Lungenentzündung führen.
Röntgen-Computertomographie
Siehe Hauptartikel Computertomographie
Vorteile der CT: Überlagerungsfreie Schnittbilder mit sehr hoher Detailauflösung, v. a. bei knöchernen Strukturen, z. B. Innenohr. Moderne Geräte, sogenannte Mehrzeilenscanner ermöglichen zum Teil bei Kontrastmittelanwendung eine Darstellung auch mittlerer und kleinerer Gefäße, z. B. Herzkranzgefäße. Kurze Aufnahmezeiten, mit und ohne iodbasierte Kontrastmittelgabe, erschließen auch den Magen-Darm-Trakt der bildlichen Darstellung, sogenannte virtuelle Endoskopie. Größter Nachteil der CT: Relativ hohe Belastung mit potenziell schädlichen Röntgenstrahlen, besonders bei den aufwendigeren Untersuchungen. Diese negative Eigenschaft des CT fällt vor allem im Vergleich zum strahlenfreien MRT ins Gewicht.
Magnetresonanztomographie
Siehe Magnetresonanztomographie, Vorteile: wie CT, dabei besserer Weichteilkontrast, keine ionisierenden Strahlen, aber höherer zeitlicher und apparativer Aufwand, höhere Kosten, geringere Toleranz beim Patienten v. a. Klaustrophobie bei herkömmlichen Geräten, neueres Design ermöglicht offenere Geräte mit guter Patientenakzeptanz, Kontrastmittel zum Beispiel Gadoliniumverbindungen und superparamagnetische Eisenoxid-Partikel.
Ultraschalluntersuchung
Siehe Sonographie, das am häufigsten angewendete bildgebende Verfahren in der Medizin, Vorteile: schonend, wiederholbar, Echtzeitbeurteilung, zum Teil Funktionsbeurteilung; Nachteil: nicht alle Gewebe und Areale zugänglich, ungeeignet für sehr adipöse Patienten. Die Untersuchung wird zu schlecht bezahlt, sodass immer weniger Ärzte sich damit auskennen und vermehrte CT und MRT Untersuchungen eingesetzt werden. Als Kontrastmittel werden kleinste Gasbläschen (microbubbles) eingesetzt, die die Struktur- und Funktionsdarstellung von Gefäßen und der Leber erleichtern, außerdem Wasser und gasabsorbierende Substanzen zur verbesserten Darstellung der Oberbauchorgane.
Ausbildung
Facharzt für Radiologie
Um nach einem absolvierten Medizinstudium in Deutschland die Bezeichnung Facharzt für Radiologie zu erwerben, bedarf es einer fünfjährigen Weiterbildungszeit. Auf die Weiterbildung anrechenbar sind:
- 12 Monate in einem Schwerpunktgebiet (Kinderradiologie, Neuroradiologie)
- 12 Monate in einem Gebiet der unmittelbaren Patientenversorgung
Der Weiterbildungsinhalt zur Erlangung des Facharzt wird über die jeweils zuständigen Ärztekammern definiert: Es ist der Nachweis einer bestimmten Anzahl selbständig durchgeführter Untersuchungen bei Kindern, Erwachsenen und in der Neuroradiologie zur Zulassung zur Facharztprüfung nötig.
Statistiken hierzu
- Am 1. Januar 2001 waren 3718 Diagnostische Radiologen registriert, von denen 1234 niedergelassen waren. 355 übten keine ärztliche Tätigkeit aus. Unter der alten (und jetzt wieder gültigen) Bezeichnung „Radiologe“ waren 3638 registriert, von denen 1231 niedergelassen waren. 1107 übten keine ärztliche Tätigkeit aus.
- Gemeinsam mit der Nuklearmedizin betrug der Praxisüberschuss 1998 im Durchschnitt 109.000 €, in den neuen Bundesländern 143.700 €.
- Auch Nicht-Radiologen dürfen in Deutschland röntgen. In der ambulanten Versorgung wird bei gesetzlich Krankenversicherten nur etwa jede vierte Röntgenuntersuchung von Vollgebietsradiologen vorgenommen. Drei Viertel der Untersuchungen dagegen entfallen auf so genannte Teilgebietsradiologen: 32 Prozent der Untersuchungen machen Orthopäden, in 13 Prozent aller Fälle röntgen Chirurgen, sieben Prozent der Untersuchungen nehmen Internisten vor. Die übrigen Untersuchungen nehmen Ärzte anderer Fachgruppen vor. Dies berichtet das Bundesamt für Strahlenschutz (BfS) in seinem neuen Jahresbericht. Demnach wurde in den Jahren 2002 bis 2004 jeder Einwohner in Deutschland pro Jahr durchschnittlich 1,7 Mal geröntgt. Bei der daraus resultierenden effektiven Strahlenbelastung liegen die Deutschen mit einer effektiven Dosis von 1,8 Millisievert „im internationalen Vergleich im oberen Bereich“, heißt es im Bericht des BfS. 50 Prozent der kollektiven effektiven Dosis gehen allerdings auf Röntgenuntersuchungen durch Vollgebietsradiologen zurück (Orthopäden: zwölf; Internisten: zehn; Chirurgen: zwei Prozent).<ref>Zitiert nach: Ärzte Zeitung, 21. August 2008, Teilradiologen röntgen in drei von vier Fällen.</ref>
Radiologietechnologe
Als Radiologietechnologe wird in Österreich ein Spezialist für die Anwendung bildgebender Verfahren in der Medizin (Röntgen, Schnittbildverfahren, Nuklearmedizin) und für die Durchführung von Heilbehandlungen mit ionisierender Strahlung (Strahlentherapie) bezeichnet. Er führt Untersuchungen und Therapien nach ärztlicher Anordnung eigenverantwortlich durch, ist fachlich weisungsfrei, hat die Berechtigung, Kontrastmittel anzuwenden (in Zusammenarbeit mit Ärzten) und kann sich freiberuflich niederlassen.
Im Zuge des Bologna-Prozesses erfolgte die Umstellung auf eine Ausbildung an der Hochschule mit akademischem Abschluss. Im Wintersemester 2006 starteten an der FH Wiener Neustadt an der FH Joanneum und der Fachhochschule Salzburg die ersten Jahrgänge, die im Sommer 2008 bzw. 2009 mit dem Bakkalaureat abgeschlossen haben.<ref>Studium. Verband der Radiotechnologinnen und -technologen Österreich, abgerufen am 26. November 2015. </ref>
In Deutschland wird ein entsprechender Studiengang ab September 2014 am Essener Haus der Technik angeboten.<ref>Bachelorstudiengang Medizinische Radiologietechnologie, berufsbegleitend, Haus der Technik, abgerufen am 5. August 2014</ref>
Medizinisch-technischer Radiologieassistent
Den Radiologietechnologen entsprechen in Deutschland die Medizinisch-technische Radiologieassistenten (MTRA). Sie führen Untersuchungen mittels konventioneller oder digitaler Radiologie (bspw. CT, MRT) selbständig aus und assistieren bei Untersuchungen wie Durchleuchtungen und digitaler Subtraktionsangiografie.
MTRA in der Nuklearmedizin arbeiten im Radionuklidlabor und führen Untersuchungen wie Szintigramme, SPECT und PET durch. MTRA wirken außerdem in der Strahlentherapie mit, helfen bei der Bestrahlungsplanung und führen die einzelnen Therapiefraktionen selbstständig durch. In der Strahlentherapie sind sie Therapeuten und vermittelnde Instanz zwischen Patient und Arzt. Daher spielt in diesem Bereich das speziell medizinische und fürsorgliche Moment eine große Rolle. In der Röntgendiagnostik und Nuklearmedizin erscheint der Patient oftmals nur einmal, ohne dass er im Betriebsablauf wahrgenommen wird. Die Tätigkeit in der Nuklearmedizin und in der Radiologie ist eher technisch betont. Die MTRA in der Strahlentherapie begleiten den Tumorpatienten dagegen über mehrere Wochen, manchmal sogar über Monate. Daher müssen sie sich umfassender mit dem Patienten auseinandersetzen: mit seiner Krankheit, seinem Allgemeinzustand, aber auch mit seinem Charakter und seiner physischen und seelischen Situation.<ref>Rolf Sauer: Strahlentherapie und Onkologie. 5. Auflage, Urban & Fischer, S 15.</ref> Die Ausbildung erfolgt in Deutschland an Berufsfachschulen oder Ausbildungszentren. Sie setzt den Sekundarschulabschluss voraus und dauert drei Jahre.
Zurzeit wird auch in Deutschland eine Ausbildungsumstellung auf Hochschulebene diskutiert, bzw. damit begonnen, mit dem berufsbegleitenden Studiengang Medizinische Radiologietechnologie als Ergänzung auch bereits ausgelernten MTRA eine Möglichkeit zur akademischen Fortbildung zu bieten.<ref>Bachelor-Studiengang „Medizinische Radiologietechnologie“ startet im September in Essen, Interview auf MTA-Dialog.de, abgerufen am 5. August 2014</ref>
In der Schweiz wird die Ausbildung an höheren Fachschulen angeboten und dauert ebenfalls 3 Jahre.<ref>http://www.medi.ch/bildungsgang/medizinisch-technische-radiologie/</ref>
Interventionelle Radiologie
Die Interventionelle Radiologie umfasst minimalinvasive therapeutische Maßnahmen, die unter permanenter Kontrolle mittels bildgebender Verfahren durchgeführt werden: zum Beispiel die Aufdehnung von Gefäßverengungen (Angioplastie) unter Durchleuchtungskontrolle (Angiographie). Bei Verwendung einer Gefäßprothese (Stent) wird diese Methode als Stentangioplastie bezeichnet. Weitere Maßnahmen im Rahmen der Interventionellen Radiologie sind u. a.: Tumorembolisationen (~verödungen), die Behandlung von akuten Blutungen, Beseitigung von Gangstenosen im Gastrointestinaltrakt oder in den Gallenwegen, Gewebeentnahmen sowie die Behandlung von Gefäßerweiterungen (Aneurysmen). Die Interventionelle Radiologie gehört systematisch nicht zur diagnostischen Radiologie, ist aber historisch aus ihr entstanden und wird meist von Radiologen durchgeführt.
Strahlenschutz
Da die angewendeten Strahlendosen in der Röntgendiagnostik zwar sehr gering, aber doch potenziell schädlich für den Patienten und den Anwender sind, wird in der Radiologie besonderer Wert auf den Strahlenschutz gelegt. Die Deutsche Gesellschaft für Medizinischen Strahlenschutz ist eine Vereinigung von Ärzten und anderen fachkundigen Personen die sich zum Ziel gesetzt hat diese Strahlungsrisiken in der Medizin zu erkunden und zu minimieren.
Deutschland nimmt mit etwa 1,3 Röntgenaufnahmen pro Einwohner und Jahr einen Spitzenplatz ein. Die medizinische Anwendung von ionisierender Strahlung führt zu einer zusätzlichen Strahlenexposition von grob 2 mSv/a pro Einwohner. Auf diese lassen sich theoretisch 1,5 % der jährlichen Krebsfälle zurückführen.<ref>de Gonzalez und Berry, Lancet 2004; 363: 345-51.</ref><ref>de Gonzalez, Sarah Darby: Risk of cancer from diagnostic X-rays: estimates for the UK and 14 other countries. Lancet 2004; 363: 345-51, doi:10.1016/S0140-6736(04)15433-0.</ref>
Den weitaus höchsten Anteil an der medizinischen Strahlenexposition hat dabei die Computertomographie.
Eine grundsätzliche Richtlinie zur Minimierung der Strahlenbelastung bei der Anwendung von radiologischen Methoden bringt die Arbeitsgruppe „Orientierungshilfe Radiologie“, der Bundesfachgruppe Radiologie der Österreichische Ärztekammer und der Österreichische Röntgengesellschaft, als unverbindliches Nachschlagewerk sowohl in Papierform als auch Online heraus. Auch die deutsche Strahlenschutzkommission bietet eine solche Orientierungshilfe an.<ref>Orientierungshilfe für bildgebende Untersuchungen, Empfehlung der Strahlenschutzkommission (PDF; 566 KB)</ref>
Literatur
- W. Angerstein (Hrsg.): Grundlagen der Strahlenphysik und radiologischen Technik in der Medizin. 5. Auflage. H. Hoffmann Verlag, 2005.
- Roland C. Bittner: Leitfaden Radiologie. ISBN 3-437-41210-8, KNO 06 29 50 87.
- Martin Breitenseher, Peter Pokieser, Gerhard Lechner: Lehrbuch der radiologisch-klinischen Diagnostik. 2. Auflage. University Publisher 3.0, 2012. ISBN 978-3-9503296-0-5.
- Dirk Pickuth: Radiologie Fakten. Uni-Med, Bremen 2002, ISBN 3-89599-310-7, KNO-NR: 11 11 20 48.
- Jörg-Wilhelm Oestmann: Radiologie. Ein fallorientiertes Lehrbuch. Thieme, Stuttgart 2002, ISBN 3-13-126751-8, KNO-NR: 10 91 20 07.
- Theodor Laubenberger, Jörg Laubenberger: Technik der medizinischen Radiologie. Diagnostik, Strahlentherapie, Strahlenschutz. Für Ärzte, Medizinstudenten und MTRA. Deutscher Ärzte-Verlag, ISBN 3-7691-1132-X, KNO-NR: 00 99 81 31.
- Deutsches Röntgen-Museum (Hrsg.): Die Augen des Professors. Wilhelm Conrad Röntgen. Eine Kurzbiografie. Vergangenheitsverlag, Berlin 2008.
- Klaus Wicke, Franz Frühwald, Dimiter Tscholakoff (Österreichische Röntgengesellschaft) und Franz Kainberger: Orientierungshilfe Radiologie - Anleitung zum optimalen Einsatz der klinischen Radiologie 4. Auflage. 2011, ISBN 978-3-902552-99-0, Online-Version: http://orientierungshilfe.vbdo.at/
Zeitschriften
- RöFo, Fortschritte auf dem Gebiet der Röntgenstrahlen und der bildgebenden Verfahren, Organ der Deutschen und der Österreichischen Röntgengesellschaft, Thieme-Verlag, ISSN 0936-6652
- Der Radiologe, Springer Verlag, ISSN 0033-832X
- radiologie-assistent, Schmidt-Römhild Verlag, ISSN 0935-1779
Siehe auch
- Computerassistierte Detektion
- Digitales Röntgen
- Röntgenreihenuntersuchung
- Röntgenzeichen
- Medizintechnik
Weblinks
- Cardiovascular and Interventional Radiological Society of Europe
- Deutsche Röntgengesellschaft
- European Society of Radiology
- radiopaedia.org (Radiology Wiki)
- hellste-koepfe.de - Portal für und über Radiologen
- Orientierungshilfe Radiologie - Anleitung zum optimalen Einsatz der klinischen Radiologie
- Medizin mit Durchblick - Informationsinitiative der Radiologen und Strahlenmediziner
Einzelnachweise
<references />