Carl Friedrich Gauß


aus Wikipedia, der freien Enzyklopädie
Wechseln zu: Navigation, Suche
25px Gauß und Gauss sind Weiterleitungen auf diesen Artikel. Für weitere Personen und Bedeutungen siehe Gauß (Begriffsklärung).
Datei:Carl Friedrich Gauss.jpg
Carl Friedrich Gauß, Porträt von Gottlieb Biermann (1887)

Johann Carl Friedrich Gauß (latinisiert Carolus Fridericus Gauss; * 30. April 1777 in Braunschweig; † 23. Februar 1855 in Göttingen) war ein deutscher Mathematiker, Astronom, Geodät und Physiker.

Seine überragenden wissenschaftlichen Leistungen waren schon seinen Zeitgenossen bewusst. Mit 18 Jahren entwickelte er die Grundlagen der modernen Ausgleichungsrechnung und der mathematischen Statistik (Methode der kleinsten Quadrate), mit der er 1800 die Wiederentdeckung des ersten Asteroiden Ceres ermöglichte. Auf Gauß gehen die nichteuklidische Geometrie, zahlreiche mathematische Funktionen, Integralsätze, die Normalverteilung, erste Lösungen für elliptische Integrale und die gaußsche Osterformel zurück. 1807 wurde er zum Universitätsprofessor und Sternwartendirektor in Göttingen berufen und später auch mit der Landesvermessung des Königreichs Hannover betraut. Neben der Zahlen- und der Potentialtheorie erforschte er u. a. das Erdmagnetfeld.

Bereits 1856 ließ der König von Hannover Gedenkmünzen mit dem Bild von Gauß und der Inschrift „Mathematicorum Principi“ (deutsch: „dem Fürsten der Mathematiker“) prägen. Da Gauß nur einen Bruchteil seiner Entdeckungen veröffentlichte, erschloss sich der Nachwelt die Tiefgründigkeit und Reichweite seines Werks in vollem Umfang erst, als 1898 sein Tagebuch (siehe unten) entdeckt und ausgewertet wurde und als der Nachlass bekannt wurde.

Nach Gauß sind viele mathematisch-physikalische Phänomene und Lösungen benannt, mehrere Vermessungs- und Aussichtstürme, zahlreiche Schulen, außerdem Forschungszentren und wissenschaftliche Ehrungen wie die Carl-Friedrich-Gauß-Medaille der Braunschweigischen Akademie und die festliche Gauß-Vorlesung, die jedes Semester an einer deutschen Hochschule stattfindet.

Leben

Eltern, Kindheit und Jugend

Datei:Braunschweig Brunswick Geburtshaus CF Gauss (1914).jpg
Das Geburtshaus von Carl Friedrich Gauß in der Wilhelmstraße 30 in Braunschweig; im Zweiten Weltkrieg wurde es vollständig zerstört.
Datei:Gauss birthhouse sign.jpg
Gedenktafel am ehemaligen Standort des Geburtshauses

Carl Friedrich war das einzige Kind der Eheleute Gebhard Dietrich Gauß (1744–1808) und Dorothea Gauß geborene Benze (1743–1839). Die Mutter Dorothea war die Tochter eines Steinmetzen aus Velpke, der früh starb, und wurde als klug, von heiterem Sinn und festem Charakter geschildert.<ref>Sartorius von Waltershausen: Gauß zum Gedächtniss.</ref> Gauß hatte zeitlebens eine enge Beziehung zu seiner Mutter, die zuletzt bei ihm auf der Sternwarte in Göttingen wohnte. Sie arbeitete zunächst als Dienstmädchen, bevor sie die zweite Frau von Gebhard Dietrich Gauß wurde. Dieser hatte viele Berufe, er war unter anderem Gärtner, Schlachter, Maurer, Kaufmannsassistent und Schatzmeister einer kleinen Versicherungsgesellschaft. Einige Anekdoten besagen, dass bereits der dreijährige Carl Friedrich seinen Vater bei der Lohnabrechnung korrigierte. Später sagte Gauß von sich selbst, er habe das Rechnen vor dem Sprechen gelernt. Sein Leben lang behielt er die Gabe, selbst komplizierteste Rechnungen im Kopf durchzuführen.

Eine Anekdote, deren Ursprung auf die Erzählungen von Wolfgang Sartorius von Waltershausen<ref>Sartorius von Waltershausen: Gauss zum Gedächtniss. 1856, S. 12.</ref><ref>Brian Hayes: Gauss’s Day of Reckoning. In: American Scientist. 94, 2006, S. 200, doi:10.1511/2006.3.200.</ref> zurückgeht, beschreibt das frühe mathematische Talent des kleinen Carl Friedrich:

Im Alter von sieben Jahren sei Gauß in die Volksschule gekommen. Als er neun Jahre alt war, habe sein Lehrer Büttner den Schülern zur längeren Beschäftigung die Aufgabe gestellt, die Zahlen von 1 bis 100 zu addieren. Gauß habe sie allerdings nach kürzester Zeit gelöst, indem er 50 Paare mit der Summe 101 gebildet (1 + 100, 2 + 99, …, 50 + 51) und 5050 als Ergebnis erhalten habe. Er legte die Antwort mit den Worten in Braunschweiger Plattdeutsch „Ligget se“ (svw: „Hier liegt sie“) dem Lehrer auf den Tisch.

Die daraus resultierende Formel wird gelegentlich auch als „der kleine Gauß“ bezeichnet. Ob es dieses Ereignis war, oder auch andere mögliche Interpretationen im Raum stehen könnten: Gauß’ Lehrer Büttner hat jedenfalls seine außergewöhnliche mathematische Begabung erkannt und gefördert, indem er (u. a.) ein besonderes Rechenbuch aus Hamburg für ihn beschaffte und, unterstützt von seinem Assistenten Martin Bartels, dafür sorgte, dass Gauß 1788 das Gymnasium Martino-Katharineum besuchen konnte.

Als der Wunderknabe Gauß vierzehn Jahre alt war, wurde er dem Herzog Karl Wilhelm Ferdinand von Braunschweig bekanntgemacht. Dieser unterstützte ihn sodann finanziell und sorgte für seinen Lebensunterhalt. So konnte Gauß von 1792 bis 1795 am Collegium Carolinum studieren, das zwischen höherer Schule und Hochschule anzusiedeln ist und der Vorgänger der heutigen Technischen Universität in Braunschweig ist. Dort war es der Professor Eberhard August Wilhelm von Zimmermann, der sein mathematisches Talent erkannte, ihn förderte und ihm ein väterlicher Freund wurde.

Datei:Carl Friedrich Gauß signature.svg
Verschnörkelter Namenszug des siebzehnjährigen Gauß

Im Oktober 1795 wechselte Gauß an die Universität Göttingen. Dort hörte er bei Christian Gottlob Heyne Vorlesungen über klassische Philologie, die ihn damals genauso wie die Mathematik interessierte. Letztere wurde durch Abraham Gotthelf Kästner, der zugleich Dichter war, repräsentiert. Bei Georg Christoph Lichtenberg hörte er im Sommersemester 1796 Experimentalphysik und sehr wahrscheinlich im folgenden Wintersemester Astronomie. In Göttingen schloss er Freundschaft mit Wolfgang Bolyai.

Studienjahre

Im Alter von 19 Jahren gelang es Gauß als Erstem, die Konstruierbarkeit des regelmäßigen Siebzehnecks zu beweisen – eine sensationelle Entdeckung, denn seit der Antike hatte es auf diesem Gebiet kaum noch Fortschritte gegeben. Dies war wohl mit ein Grund, sich gegen Sprachen und Philosophie und für das Studium der Mathematik zu entscheiden, das er 1799 mit seiner Doktorarbeit an der Academia Julia, der Universität in Helmstedt, abschloss. Die Mathematik war hier durch Johann Friedrich Pfaff – der sein Doktorvater wurde – gut vertreten, und nicht zuletzt legte Gauß’ Gönner, der Herzog von Braunschweig, Wert darauf, dass Gauß nicht an einer „ausländischen“ Universität promoviert werden sollte.

Nach seiner Promotion lebte Gauß in Braunschweig von dem kleinen Gehalt, das ihm der Herzog zahlte, und arbeitete an seinem Werk Disquisitiones Arithmeticae.

Einen Ruf an die Petersburger Akademie der Wissenschaften lehnte Gauß aus Dankbarkeit gegenüber seinem Gönner, dem Herzog von Braunschweig, und wohl in der Hoffnung, dass dieser ihm eine Sternwarte in Braunschweig bauen würde, ab. Nach dem plötzlichen Tod des Herzogs nach der Schlacht bei Jena und Auerstedt wurde Gauß im November 1807 Professor in Göttingen und Direktor der dortigen Sternwarte. Dort musste er Lehrveranstaltungen halten, gegen die er aber eine Abneigung entwickelte. Trotzdem wurden mehrere seiner Studenten einflussreiche Mathematiker, darunter Richard Dedekind und Bernhard Riemann. 1822 wurde Gauß in die American Academy of Arts and Sciences gewählt.

Ehen, Familie und Kinder

Datei:Therese Gauss.jpg
Tochter Therese

Im November 1804 verlobte er sich mit Johanna Elisabeth Rosina Osthoff (* 8. Mai 1780; † 11. Oktober 1809), der Tochter eines Weißgerbers aus Braunschweig, und heiratete sie am 9. Oktober 1805. Am 21. August 1806 wurde in Braunschweig ihr erstes Kind Joseph († 4. Juli 1873) geboren, benannt nach Giuseppe Piazzi, dem Entdecker des Zwergplaneten Ceres, dessen Wiederauffindung Gauß’ Bahnberechnung 1801 ermöglicht hatte. Joseph war später Artillerieoffizier des Königreichs Hannover und Direktor des Eisenbahnnetzes im Königreich. Nachdem er seinem Vater schon bei den geodätischen Arbeiten assistiert hatte, war er später an der kartografischen Landesaufnahme des Königreichs beteiligt. Nachdem die Familie nach Göttingen gezogen war, wurden am 29. Februar 1808 die Tochter Wilhelmine († 12. August 1840) und am 10. September 1809 der Sohn Louis geboren. Am 11. Oktober 1809 starb Johanna Gauß an den Folgen der Geburt, Louis selbst starb am 1. März 1810. Durch diese Ereignisse fiel Gauß eine Zeit lang in eine Depression, in der er die sogenannte „Totenklage“ verfasste.<ref>Horst Michling: Carl Friedrich Gauß. 2. Aufl. Göttingen, 1982, S. 67–68.</ref>

Am 4. August 1810 heiratete der Witwer, der zwei kleine Kinder zu versorgen hatte, Friederica Wilhelmine Waldeck (genannt Minna; * 15. April 1788; † 12. September 1831), Tochter des Göttinger Rechtswissenschaftlers Johann Peter Waldeck, die die beste Freundin seiner verstorbenen Frau gewesen war. Mit ihr hatte er drei Kinder: Eugen (* 29. Juli 1811; † 4. Juli 1896),<ref>Gausschildren.org (abgerufen am 22. Juli 2011)</ref><ref>Wyneken Family Tree (abgerufen am 22. Juli 2011)</ref> der die Rechte studierte und 1830 nach Amerika auswanderte, wo er als Kaufmann lebte und die „First National Bank“ von St. Charles gründete, Wilhelm (* 23. Oktober 1813; † 23. August 1879), der 1837 Eugen nachfolgte und ebenfalls nach Amerika auswanderte, um dort Landwirtschaft zu betreiben, und Therese (* 9. Juni 1816; † 11. Februar 1864). Im Sommer 1818 begann Minna zu kränkeln, was sich später als Tuberkulose herausstellte. Am 12. September 1831 starb auch sie. Von da an bis zum Tod von Gauß, der nun zum zweiten Mal Witwer war, führte seine jüngste Tochter Therese den Haushalt.

Späte Jahre

Datei:Göttingen-Grave.of.Gauß.06.jpg
Grabstätte von Carl Friedrich Gauß auf dem historischen Albani-Friedhof, angrenzend an den Cheltenhampark in Göttingen

In fortgeschrittenem Alter beschäftigte er sich zunehmend mit Literatur, nachdem er 1842 in die Friedensklasse des Ordens Pour le Mérite aufgenommen worden war, und führte auch Listen über die Lebenserwartung berühmter Männer (in Tagen gerechnet). So schrieb er am 7. Dezember 1853 an seinen Freund und Kanzler seines Ordens Alexander von Humboldt u. a.: „Es ist übermorgen der Tag, wo Sie, mein hochverehrter Freund, in ein Gebiet übergehen, in welches noch keiner der Koryphäen der exacten Wissenschaften eingedrungen ist, der Tag, wo Sie dasselbe Alter erreichen, in welchem Newton seine durch 30766 Tage gemessene irdische Laufbahn geschlossen hat. Und Newtons Kräfte waren in diesem Stadium gänzlich erschöpft: Sie stehen zur höchsten Freude der ganzen wissenschaftlichen Welt noch im Vollgenuss Ihrer bewundernswürdigen Kraft da. Mögen Sie in diesem Genuss noch viele Jahre bleiben.“<ref>Brief Nr. 45 an Alexander von Humboldt vom 7. Dezember 1853</ref>

Gauß war sehr konservativ und monarchistisch eingestellt, die Revolution von 1848 hieß er nicht gut.

Tod

Gauß starb am 23. Februar 1855 morgens um 1.05 Uhr in Göttingen. Heute liegt er dort auf dem Albani-Friedhof begraben.

Leistungen

Begründung und Beiträge zur nicht-euklidischen Geometrie

Datei:Bendixen - Carl Friedrich Gauß, 1828.jpg
Lithographie von Gauß in den Astronomischen Nachrichten, 1828 von Bendixen

Gauß misstraute bereits mit zwölf Jahren der Beweisführung in der elementaren Geometrie und ahnte mit sechzehn Jahren, dass es neben der euklidischen noch eine andere, nicht-euklidische Geometrie geben muss.

Diese Arbeiten vertiefte er in den 1820er Jahren: Unabhängig von János Bolyai und Nikolai Iwanowitsch Lobatschewski bemerkte er, dass das euklidische Parallelenaxiom nicht denknotwendig ist. Seine Gedanken zur nichteuklidischen Geometrie veröffentlichte er jedoch nicht, vermutlich aus Furcht vor dem Unverständnis der Zeitgenossen. Als ihm sein Studienfreund Wolfgang Bolyai, mit dem er korrespondierte, allerdings von den Arbeiten seines Sohnes János Bolyai berichtet, lobt er ihn zwar, kann es aber nicht unterlassen zu erwähnen, dass er selbst schon sehr viel früher darauf gekommen war („ ein durch drei Berge, den Brocken, den Hohen Hagen und den Inselberg gebildetes Dreieck, dessen Seiten 69, 85 und 107 km maßen. Es braucht kaum eigens gesagt zu werden, daß er innerhalb der Fehlergrenze keine Abweichung von 180° entdeckte und daraus den Schluß zog, die Struktur des wirklichen Raumes sei, soweit die Erfahrung darüber eine Aussage erlaubt, Euklidisch.“<ref>Max Jammer: Das Problem des Raumes. Darmstadt 1960, S. 164.</ref>

Magnetismus, Elektrizität und Telegrafie

Zusammen mit Wilhelm Eduard Weber arbeitete er ab 1831 auf dem Gebiet des Magnetismus. Gauß erfand mit Weber das Magnetometer und verband so 1833 seine Sternwarte mit dem physikalischen Institut. Dabei tauschte er über elektromagnetisch beeinflusste Kompassnadeln Nachrichten mit Weber aus; die erste (elektromagnetische) Telegrafenverbindung auf der Welt. Mit ihm zusammen entwickelte er auch das cgs-Einheitensystem, das später, 1881, auf einem internationalen Kongress in Paris zur Grundlage der elektrotechnischen Maßeinheiten bestimmt wurde. Er organisierte ein weltweites Netz von Beobachtungsstationen (Magnetischer Verein), um das erdmagnetische Feld zu vermessen.

Gauß fand bei seinen Experimenten zur Elektrizitätslehre 1833 auch unabhängig von Gustav Robert Kirchhoff (1845) die Kirchhoffschen Regeln für Stromkreise.<ref>Dunnington: Gauss – Titan of Science, American Mathematical Society, S. 161.</ref>

Arbeitsweise von Gauß

Gauß arbeitete auf vielen Gebieten, veröffentlichte seine Ergebnisse jedoch erst, wenn eine Theorie seiner Meinung nach komplett war. Dies führte dazu, dass er Kollegen gelegentlich darauf hinwies, dieses oder jenes Resultat schon lange bewiesen zu haben, es wegen der Unvollständigkeit der zugrundeliegenden Theorie oder der ihm fehlenden, zum schnellen Arbeiten nötigen Unbekümmertheit nur noch nicht präsentiert zu haben.

Bezeichnenderweise besaß Gauß ein Petschaft, das einen von wenigen Früchten behangenen Baum und das Motto „Pauca sed matura“ (deutsch: „Weniges, aber Reifes“) zeigte. Einer Anekdote zufolge lehnte er es Bekannten, die Gauß’ umfangreiche Arbeiten kannten oder ahnten, gegenüber ab, diesen Wahlspruch zu ersetzen, z. B. durch „Multa nec immatura“ (deutsch: „Viel, aber nicht Unreifes“), da nach seinem eigenen Bekunden er lieber eine Entdeckung einem anderen überließ, als sie nicht vollständig ausgearbeitet unter seinem Namen zu veröffentlichen. Das ersparte ihm Zeit in den Bereichen, die Gauß eher als Randthemen betrachtete, so dass er diese Zeit auf seine originäre Arbeit verwenden konnte.

Sonstiges

Bei seinem Tod wurde das Gehirn von Gauß entnommen. Es wurde mehrfach mit verschiedenen Methoden untersucht, aber ohne einen besonderen Befund, der seine mathematischen Fähigkeiten erklären würde (zuletzt 1998 durch eine Gruppe um Jens Frahm).<ref>Wolfgang Hänicke, Jens Frahm und Axel D. Wittmann: Magnetresonanz-Tomografie des Gehirns von Carl Friedrich Gauß. In: MPI News 5, Heft 12 (1999). Online-Fassung, Internet-Archiv (Memento vom 19. Juli 2011 im Internet Archive)</ref> Es befindet sich heute separat, in Formalin konserviert, in der Abteilung für Ethik und Geschichte der Medizin der Medizinischen Fakultät der Universität Göttingen.

Im Herbst 2013 wurde an der Universität Göttingen eine Verwechslung aufgedeckt: Die zu diesem Zeitpunkt über 150 Jahre alten Gehirnpräparate des Mathematikers Gauß und des Göttinger Mediziners Conrad Heinrich Fuchs sind – wahrscheinlich schon bald nach der Entnahme – vertauscht worden. Beide Präparate wurden in der Anatomischen Sammlung der Göttinger Universitätsklinik in Gläsern mit Formaldehyd aufbewahrt. Das Originalgehirn von Gauß befand sich im Glas mit der Aufschrift „C. H. Fuchs“, und das Fuchs-Gehirn war etikettiert mit „C. F. Gauss“. Damit sind auch die bisherigen Untersuchungsergebnisse über das Gehirn von Gauß obsolet. Die Wissenschaftlerin Renate Schweizer befasste sich wegen der vom vermeintlichen Gehirn von Gauß angefertigten MRT Bilder, die eine seltene Zweiteilung der Zentralfurche zeigten, erneut mit den Präparaten und entdeckte, dass diese Auffälligkeit in Zeichnungen, die kurz nach Gauß' Tod erstellt wurden, fehlte.<ref>Aus HNA.de vom 28. Oktober 2013: Unerwartete Entdeckung: Falsches Gehirn im Glas</ref><ref>Hannoversche Allgemeine Zeitung, 29. Oktober 2013</ref>

Gauß als Namensgeber

Datei:Gauss Wilseder Berg.jpg
Porträtbildnis an einem Vermessungsstein am Wilseder Berg

Von Gauß entwickelte Methoden oder Ideen, die seinen Namen tragen, sind:

Datei:10 DM Serie4 Vorderseite.jpg
Carl Friedrich Gauß, die gaußsche Normalverteilung und die Sternwarte Göttingen auf dem 10-DM-Schein. Porträtwiedergabe seitenverkehrt

Methoden und Ideen, die teilweise auf seinen Arbeiten beruhen, sind:

Datei:Forschungsschiff Gauss.jpg
Vermessungsschiff Gauss

Zu seinen Ehren benannt sind:

Schriften

Briefwechsel und Tagebuch

Gesamtausgabe

  • Carl Friedrich Gauß: Werke, herausgegeben von der (Königlichen) Gesellschaft der Wissenschaften zu Göttingen.
    • Band 1 bis 6, Dieterich, Göttingen 1863–1874 (bei Google Books: Band 2, 3, 3, 3, 5; im Internet-Archiv: Band 4, 4, 6), zweiter Abdruck 1870–1880 (im Internet-Archiv: Band 1, 2, 2, 3, 3, 4, 5, 5).
    • Band 7 bis 12, B. G. Teubner, Leipzig 1900–1917, Julius Springer, Berlin 1922–1933 (im Internet-Archiv: Band 7, 9, 10.2(1+5), 10.2(4)).

In den Bänden 10 und 11 finden sich ausführliche Kommentare von Paul Bachmann (Zahlentheorie), Ludwig Schlesinger (Funktionentheorie), Alexander Ostrowski (Algebra), Paul Stäckel (Geometrie), Oskar Bolza (Variationsrechnung), Philipp Maennchen (Gauß als Rechner), Harald Geppert (Mechanik, Potentialtheorie), Andreas Galle (Geodäsie), Clemens Schaefer (Physik) und Martin Brendel (Astronomie). Herausgeber war zuerst Ernst Schering, dann Felix Klein.

Übersetzungen

  • Recherches générales sur les surfaces courbes, Bachelier, Paris 1852 (französische Übersetzung von Disquisitiones generales circa superficies curvas, 1828; bei Gallica).
  • Méthode des moindres carrés, Mallet-Bachelier, Paris 1855 (französische Übersetzung von Theoria combinationis observationum erroribus minimis obnoxiae, 1823/1828, und weiteren von Joseph Bertrand; bei Google Books, dito).
  • Theory of the Motion of the Heavenly Bodies Moving about the Sun in Conic Sections, Little, Brown and Company, Boston 1857 (englische Übersetzung von Theoria motus corporum coelestium in sectionibus conicis solem ambientium, 1809, von Charles Henry Davis; bei Google Books, dito; im Internet-Archiv, dito, dito).
  • Carl Haase (Hrsg.): Theorie der Bewegung der Himmelskörper welche in Kegelschnitten die Sonne umlaufen, Carl Meyer, Hannover 1865 (deutsche Übersetzung von Theoria motus corporum coelestium in sectionibus conicis solem ambientium, 1809, von Carl Haase; bei Google Books); Faksimile-Reprint Verlag Kessel, 2009, ISBN 978-3-941300-13-2.
  • Anton Börsch, Paul Simon (Hrsg.): Abhandlungen zur Methode der kleinsten Quadrate von Carl Friedrich Gauss, P. Stankiewicz, Berlin 1887 (deutsche Übersetzung von Theoria combinationis observationum erroribus minimis obnoxiae, 1823/1828, und weiteren; im Internet-Archiv).
  • Heinrich Simon (Hrsg.): Allgemeine Untersuchungen über die unendliche Reihe <math>\scriptstyle 1 + \frac{\alpha\beta}{1.\gamma} x + \frac{\alpha(\alpha+1) \beta(\beta+1)}{1\ .\ 2\ .\ \gamma(\gamma+1)} xx + \frac{\alpha(\alpha+1)(\alpha+2) \beta(\beta+1)(\beta+2)}{1\ .\ 2\ .\ 3\ .\ \gamma(\gamma+1)(\gamma+2)} x^3 +</math> u.s.w., Julius Springer, Berlin 1888 (deutsche Übersetzung von Disquisitiones generales circa seriem infinitam 1+…, 1813, von Heinrich Simon; im Internet-Archiv).
  • Hermann Maser (Hrsg.): Carl Friedrich Gauss’ Untersuchungen über höhere Arithmetik, Julius Springer, Berlin 1889 (deutsche Übersetzung von Disquisitiones Arithmeticae, 1801, und weiteren; im Internet-Archiv); Faksimile-Reprint Verlag Kessel, 2009, ISBN 978-3-941300-09-5.
  • Albert Wangerin (Hrsg.): Allgemeine Flächentheorie (Disquisitiones generales circa superficies curvas), Wilhelm Engelmann, Leipzig 1889 (deutsche Übersetzung; bei der University of Michigan; im Internet-Archiv, dito).
  • Eugen Netto (Hrsg.): Die vier Gauss’schen Beweise für die Zerlegung ganzer algebraischer Funktionen in reelle Factoren ersten oder zweiten Grades (1799–1849), Wilhelm Engelmann, Leipzig 1890 (deutsche Übersetzung der Doktorarbeit, 1799, und weiterer Arbeiten; bei der University of Michigan; im Internet-Archiv, dito, dito).
  • Eugen Netto (Hrsg.): Sechs Beweise des Fundamentaltheorems über quadratische Reste von Carl Friedrich Gauss, Wilhelm Engelmann, Leipzig 1901 (deutsche Übersetzung aus Disquisitiones Arithmeticae, 1801, und weiteren mit Anmerkungen; bei der University of Michigan; im Internet-Archiv, dito, dito, dito).
  • General investigations of curved surfaces of 1827 and 1825, The Princeton University Library, 1902 (englische Übersetzung von Disquisitiones generales circa superficies curvas, 1828, und Neue allgemeine Untersuchungen über die krummen Flächen, 1900, von James Caddall Morehead und Adam Miller Hiltebeitel; bei der University of Michigan; im Internet-Archiv, dito).
  • Heinrich Weber (Hrsg.): Allgemeine Grundlagen einer Theorie der Gestalt von Flüssigkeiten im Zustand des Gleichgewichts, Wilhelm Engelmann, Leipzig 1903 (deutsche Übersetzung von Principia generalia theoriae figurae fluidorum in statu aequilibrii, 1830, von Rudolf Heinrich Weber; im Internet-Archiv, dito).

Kartenwerke

Denkmäler

Statuen und Plastiken

Schriftliche Erinnerungskultur

  • Auf der Vorderseite der 10-DM-Banknote der vierten Serie der Deutschen Mark ist eine Abbildung Gauß’ zusammen mit einer Darstellung der Glockenkurve und wichtiger Gebäude Göttingens zu finden. An ihn erinnern ebenso zwei Sondermünzen, die 1977 aus Anlass seines 200. Geburtstages in der Bundesrepublik Deutschland (5 DM) und in der DDR (20 M) herausgegeben wurden.
  • In Deutschland erinnern drei Briefmarken an Gauß: 1955 gab die Deutsche Bundespost aus Anlass seines 100. Todestages eine 10-Pf-Briefmarke heraus; 1977 erinnerte die DDR mit einer 20-Pf-Briefmarke an den 200. Geburtstag, ebenso die Deutsche Bundespost mit einer 40-Pf-Briefmarke.
  • Gedenktafel am Standort des Geburtshauses Wilhelmstraße 30 in Braunschweig.
  • Drei Göttinger Gedenktafeln.
  • Zwei Gedenktafeln am ehemaligen Wohnhaus von Gauß' Doktorvater Johann Friedrich Pfaff in Helmstedt.

Gaußsteine

Zu den zahlreichen auf Anleitung von Gauß aufgestellten Vermessungssteinen gehören:

Bildnisse

Von Gauß gibt es relativ viele Bildnisse, unter anderem:

Literatur

Belletristik:

Filme

Weblinks

Commons Commons: Carl Friedrich Gauß – Album mit Bildern, Videos und Audiodateien
Wikisource Wikisource: Carl Friedrich Gauß – Quellen und Volltexte
Wikisource Wikisource: Johann Carl Friedrich Gauß – Quellen und Volltexte (Latein)

Einzelnachweise

<references />


Gesprochene Wikipedia Der Artikel Carl Friedrich Gauß ist als Audiodatei verfügbar:

150px Speichern | Informationen | 52:54 min (24,7 MB) Text der gesprochenen Version (9. Februar 2015)

Mehr Informationen zur gesprochenen Wikipedia
24px Dieser Artikel wurde am 21. Juli 2005 in dieser Version in die Liste der lesenswerten Artikel aufgenommen.