Claudius Ptolemäus


aus Wikipedia, der freien Enzyklopädie
(Weitergeleitet von Claudius Ptolemaeus)
Wechseln zu: Navigation, Suche
25px Dieser Artikel behandelt den Mathematiker und Geographen. Andere Personen mit diesem Namen siehe unter Ptolemaios.
Datei:Claudius Ptolemaeus.jpg
Claudius Ptolemäus, neuzeitliches Idealporträt

Claudius Ptolemäus (griechisch Κλαύδιος Πτολεμαῖος Klaúdios Ptolemaíos, lateinisch Claudius Ptolomaeus; * um 100, möglicherweise in Ptolemais Hermeiou, Ägypten; † nach 160, vermutlich in Alexandria)<ref>G. J. Toomer: Ptolemy. In: Dictionary of Scientific Biography. Band 11, New York 1976, S. 186–206.</ref> war ein griechischer Mathematiker, Geograf, Astronom, Astrologe, Musiktheoretiker und Philosoph. Insbesondere seine drei Werke zur Astronomie, Geografie und Astrologie galten in Europa bis in die frühe Neuzeit als wichtige umfangreiche Datensammlungen und wissenschaftliche Standardwerke.

So schrieb Ptolemäus die Mathematike Syntaxis („mathematische Zusammenstellung“), später Megiste Syntaxis („größte Zusammenstellung“), heute Almagest (abgeleitet vom Arabischen al-maǧisṭī) genannte Abhandlung zur Mathematik und Astronomie in 13 Büchern. Sie war bis zum Ende des Mittelalters ein Standardwerk der Astronomie und enthielt neben einem ausführlichen Sternenkatalog eine Verfeinerung des von Hipparchos von Nicäa vorgeschlagenen geozentrischen Weltbildes, das später nach ihm ptolemäisches Weltbild genannt wurde.

Damit verwarf er wie der größte Teil seiner Zeitgenossen das von Aristarchos von Samos und Seleukos von Seleukia vertretene heliozentrische Weltbild, das erst 1300 Jahre später durch Nikolaus Kopernikus, Johannes Kepler und Galileo Galilei in Europa durchgesetzt werden sollte.

Astronomie

Ptolemäisches Weltbild

Nach Ptolemäus befindet sich die Erde fest im Mittelpunkt des Weltalls, dem Centrum Mundi. Alle anderen Himmelskörper (Mond, Sonne, die fünf damals bekannten Planeten und der Sternhimmel) bewegen sich in kristallenen Sphären auf als vollkommen angesehenen Kreisbahnen (Deferent) um ihren Mittelpunkt Centrum Deferentis. Die Bewegung auf dem Deferent ist nicht gleichförmig. Es gibt jedoch einen weiteren Punkt, von dem die Bewegung auf dem Deferent gleichförmig erscheint. Dies ist das Centrum Aequantis. Alle drei Zentren liegen auf einer Linie (Linie der Zentren) und sind jeweils um die Exzentrizität des Planeten gegeneinander versetzt. Um astronomische Beobachtungen, insbesondere die zeitweise rückwärtige Bewegung der Planeten mit diesem System in Einklang zu bringen, war es allerdings notwendig, alle Himmelskörper auf ihren Bahnen weitere Kreise (Epizykel) um diese Deferenten ziehen zu lassen – siehe Epizykeltheorie – und teilweise noch weitere Bewegungen um die primären Epizykel, oder die Linie der Zentren rotieren zu lassen (Mondtheorie und Merkurtheorie). Durch den Einsatz solcher (gegeneinander leicht geneigter) Bahnen konnte Ptolemäus sein Modell mit den damals noch freiäugigen Beobachtungen in Einklang bringen.

In der Sprache heutiger Mathematik könnte man Ptolemäus’ Berechnungsart als empirischen Vorläufer der Fourieranalyse bezeichnen, mit der die sekundären Perioden der Planetenbahnen (u. a. die Mittelpunktsgleichung) empirisch bestimmt wurden.

Das ptolemäische Weltbild war in der Genauigkeit seiner Bahnvorhersage dem heliozentrischen Weltbild des Nikolaus Kopernikus (16. Jh.) überlegen. Das ptolemäische System wurde um 1600 durch das ebenfalls noch geozentrische tychonische Weltsystem (benannt nach Tycho Brahe) abgelöst. Erst Keplers Entdeckung, dass die Planeten auf Ellipsen um die Sonne laufen, führte dann zu einem damals ausreichend genauen und unter Astronomen allgemein akzeptierten Modell des kopernikanischen Weltbildes. Ptolemäus’ Berechnungsmethoden waren äußerst präzise (lange Zeit auch präziser als die keplerschen) und in ihrer Grundidee als Berechnungsmethode auch richtig, nicht allerdings in ihrer philosophischen Deutung, dass sich alles um die Erde als Mittelpunkt drehe. Der Durchbruch und Erfolg der keplerschen Berechnungen lag weniger darin begründet, dass die Sonne und nicht mehr die Erde im Mittelpunkt der Bewegungen stand, sondern in der Tatsache, dass Kepler Ellipsenbahnen und keine Kreisbahnen mehr verwendete, was zu einer größeren Übereinstimmung mit den von Tycho Brahe und später Galileo Galilei tatsächlich gemessenen Planetendaten führte.

Kritik

Datei:Cellarius ptolemaic system.jpg
Darstellung des ptolemäischen Weltsystems 1661

In neuerer Zeit wurden die Leistungen des Ptolemäus jedoch sehr viel kritischer bewertet. Schon Tycho Brahe sprach um 1600 von „Betrug“. 1817 warf ihm der französische Astronom und Mathematiker Jean-Baptiste Joseph Delambre gefälschte und fingierte Beobachtungen, vorgefasste Meinungen, Lügen und Plagiat vor. Dies wurde 1977 und nochmals 1985 durch den US-amerikanischen Astronomen Robert Russell Newton in vollem Umfang wiederholt. So sollen laut Newton fast alle von Ptolemäus angeblich selbst gemachten Beobachtungen fiktiv oder von Hipparchos übernommen sein, dessen Längenangaben nur 2° 40', der Wert der aufgelaufenen Präzession, hinzugefügt wurden (korrekt wären 3° 40’ gewesen). Diesem vernichtenden Urteil über Ptolemäus hat sich B. L. van der Waerden in seinem 1988 erschienenen Buch Die Astronomie der Griechen angeschlossen.

Andererseits präsentierte bereits 1796 Pierre Simon Laplace eine simple Erklärung: Die Differenz von einem Bogengrad lasse sich durch einen gleich großen Fehler in der damaligen Theorie der Sonnenbewegung begründen. Bradley E. Schaefer kam 2002 zu dem Schluss, eine beträchtliche Anzahl der von Ptolemäus genannten Beobachtungsdaten habe dieser (bzw. seine Assistenten) selbst gewonnen. Er habe jedoch dann, wenn fremde, ältere Daten besser zu seinem Modell passten als seine eigenen, diese ohne ausdrückliche Quellenangabe übernommen. Diese Vorgehensweise war zu einer Zeit, in der man an wissenschaftliche Arbeiten noch nicht die heute üblichen Maßstäbe anlegte, durchaus üblich.

Weiteres

Ein weiteres astronomisches Werk des Ptolemäus sind seine „Planetenhypothesen“, in dem er die Ergebnisse des Almagest dazu benutzte, Aussagen über die Dimensionen des Universums im Großen zu treffen. So schätzte er aufgrund seines Modells die mittlere Distanz zur Sonne als 1.210 (tatsächlich: 23.480) und die Distanz zur Fixsternsphäre als 20.000 Erdradien. Gezeigt wird darin auch, wie ein anschauliches mechanisches Modell des Kosmos gebaut werden kann.

Eine weitere vor allem für praktische Zwecke gedachte Sammlung sind seine „Handlichen Tabellen“. In der Phaseis (Aufgänge und Niedergänge der Sterne mit Wetterzeichen) stellte er zudem einen Sternkatalog basierend auf dem Lauf der Sterne übers ganze Jahr zusammen und erweiterte jenen von Hipparchos um etwa ein Viertel. Zur Anwendung der Mathematik auf astronomische Fragestellungen stammen von ihm die beiden Schriften Analemma und Planisphaerium. Astronomisch auch erwähnenswert ist die auf einer Stele erhaltene Kanobusinschrift.

Seinen chronologischen Angaben bezüglich astronomischer Aufzeichnungen ordnet Ptolemäus Daten des ägyptischen Kalenders zu. Um Mehrdeutigkeiten zu vermeiden, nennt er für nächtliche Ereignisse den ausgehenden und beginnenden altägyptischen Tag. Aufgrund jener präzisen Angaben sind die jeweiligen Vorkommnisse im julianischen Kalender exakt datierbar.

Mathematik

Datei:Satz ptolemaeus.png
Satz von Ptolemäus

Einzig bekanntes eigenständiges mathematisches Werk ist die nur noch bei Proklos überlieferte Abhandlung über das Parallelenpostulat, in dem er einen Beweis für das Parallelenaxiom von Euklid geben wollte, der aber mathematisch nachweisbar falsch ist. Andere mathematische Ausführungen wurden in die genannten primär anwendungsorientierten astronomischen Schriften eingearbeitet.

So stammt von ihm der Satz von Ptolemäus. Dieser mathematische Lehrsatz gilt für Sehnenvierecke, also Vierecke, zu denen ein Kreis durch alle vier Ecken konstruiert werden kann. Der Satz von Ptolemäus besagt, dass bei einem Sehnenviereck die Summe aus dem Produkt gegenüberliegender Seitenlängen das Produkt der beiden Diagonalen ergibt. Somit gilt ac + bd = ef. Da auch symmetrische Trapeze einen Umkreis haben, erhält man für die symmetrischen Schenkel b = d und den Diagonalen e = f den Sonderfall ac + b2 = e2. Der Satz gilt ferner auch für Rechtecke, die ebenfalls einen Umkreis haben. Hier gilt dann a = c , so dass der Satz von Ptolemäus den Satz des Pythagoras als Spezialfall enthält: a2 + b2 = e2. Wie auch der Satz des Pythagoras ist der Satz von Ptolemäus umkehrbar.

Datei:Konstruktion5eck.png
Konstruktion des regelmäßigen Fünfecks nach Ptolemäus

Im Almagest (XIII 10) findet sich folgende Konstruktion des regelmäßigen Fünf- bzw. Zehnecks: Zum gegebenen Umkreis (Durchmesser 1450, Digitalisat der Sächsischen Landesbibliothek

Digitalisate

Fußnoten

<references />