Leiterplatte


aus Wikipedia, der freien Enzyklopädie
Wechseln zu: Navigation, Suche

Eine Leiterplatte (Leiterkarte, Platine oder gedruckte Schaltung; englisch printed circuit board, PCB) ist ein Träger für elektronische Bauteile. Sie dient der mechanischen Befestigung und elektrischen Verbindung. Nahezu jedes elektronische Gerät enthält eine oder mehrere Leiterplatten.

Leiterplatten bestehen aus elektrisch isolierendem Material mit daran haftenden, leitenden Verbindungen (Leiterbahnen). Als isolierendes Material ist faserverstärkter Kunststoff üblich. Die Leiterbahnen werden zumeist aus einer dünnen Schicht Kupfer geätzt. Die Bauelemente werden auf Lötflächen (Pads) oder in Lötaugen gelötet. So werden sie an diesen footprints gleichzeitig mechanisch gehalten und elektrisch verbunden. Größere Komponenten können auch mit Kabelbindern, Klebstoff oder Verschraubungen auf der Leiterplatte befestigt werden.

Datei:Splatine.jpg
Oben: Bestückungsseite einer einseitigen Leiterplatte mit Bauteilen. Unten: Lötseite mit dem grünen, transparenten Lötstopplack. Das hellbraune Basismaterial erscheint durch den Lötstopplack hellgrün, die kupfernen Leiterbahnen dunkelgrün.

Leiterplattenarten

Datei:NB-1 MAIN(B) PCB 01.jpg
Leiterplatte, mit elektronischen Bauelementen bestückt

Die Leiterplattenarten reichen von einseitigen Leiterplatten über Multilayer bis hin zu Sondertechniken.

  • Standardleiterplatten
    • Einseitige und zweiseitige Leiterplatten
  • Multilayer mit mehreren Lagen (unterschiedlich, je nach Hersteller)
  • Sondertechniken (Sondertechniken kommen in allen Industriezweigen zum Einsatz und besitzen besondere Eigenschaften und Anforderungen)
    • Starrflex: Die Starrflex Leiterplatte bietet vor allem für Systeme, die einer ständigen Biegung unterliegen, eine zuverlässige und langlebige Komponente.
    • Flexlam
    • Hochstrom: Um den Transport von hohen Strömen und Signalelektronik über eine Leiterplatte zu realisieren.
    • Dickkupfer
    • Dünnstleiterplatten
    • Schleifring: Ein Schleifring wird für die Übertragung und zum Abgreifen von Energie, Signalen und Daten bei sich drehenden Systemen genutzt. Einsatzgebiete sind beispielsweise bei Industrierobotern und Windkrafträdern. Voraussetzung für die Zuverlässigkeit und Lebensdauer einer Schleifringoberfläche ist die richtige Applikation der Edelmetallbeschichtung.
    • HDI-Leiterplatte
    • IMS Leiterplatte
    • Leiterplatten auf Glas

Herstellung

Datei:Lp3b.png
CAD-Leiterplattenentwurf

Entwurf

Der Leiterplattenentwurf (Layout) erfolgt heute meist mit einer Software, die neben den Leiterzug-Daten auch den Schaltplan und oft Stücklisten sowie auch Daten wie Lotpasten-Muster oder Bestückungsdruck enthält. Der Leiterplattenentwurf kann von den Leiterplatten-Layout-Programmen in einem Standardformat ausgegeben werden. Die meisten Leiterplattenhersteller verarbeiten die Formate Gerber RS-274X, Excellon oder Sieb & Meyer. Dabei werden die Projektdaten der Leiterplatte aufgeteilt. Der erste Teil besteht aus Gerber-Daten für die Topographie der Leiterplatten. Hiermit werden z. B. der Leiterbahnverlauf und die Lokalisierung von PADs etc. dokumentiert. Der zweite Teil besteht aus den Bohrdaten im Format der Excellon- oder Sieb & Meyer-Daten.

Die Leiterplattenentflechtung (manuell oder mit einem Autorouter) ist der Hauptinhalt des Entwurfes. Dazu kommen technologische Angaben wie Kupferstärke, Platinen-Fertigungstechnologie und Oberflächenart. Jetzt erfolgt die übergabe der Daten an den Leiterplattenhersteller.

CAM

Der Leiterplattenhersteller wird die Daten zuerst in eine CAM-Station einlesen. In der CAM-Station wird zuerst aus den Daten wieder ein Lagenaufbau erstellt, damit die Funktion der Daten beim System bekannt ist. Dann wird geprüft ob die angelieferte Daten auch wirklich zu fertigen sind, mittels Design Rule Checks. Ist dieser Schritt überwunden kann ein Produktionspanel erstellt werden. Ab hier ist es dann möglich für die Fertigung benötigte Programme zu generieren. Dazu gehören Ausgaben für Filmplotters/Imagers, Bohr-, Fräs- und Ritzdaten, AOI (Automatic Optical Inspection) Ausgaben, Elektrische Prüfprogramme, und vieles mehr.

Die Produktionsdaten sind in nach Funktion getrennten Ebenen strukturiert:

  • Muster einer oder mehrerer Kupferlagen (Leiterzüge und Flächen)
  • Bohrlöcher (Lage, Tiefe und Durchmesser)
  • Umriss und Durchbrüche
  • Bestückungsplan oben und unten
  • Lötstopplack oben und unten
  • Bestückungsdruck oben und unten
  • Klebepunkte und Lotpastenmuster für SMD-Bauteile oben und unten
  • Partielle Metallisierungen (zum Beispiel Vergoldung für Kontaktflächen)

Serienfertigung

Photochemisches Verfahren

Datei:PCBs hanging in electroplating machine.jpg
Leiterplatten während ihrer Elektroplattierung

Der größte Teil einseitiger und doppelseitiger durchkontaktierter Leiterplatten wird fotochemisch hergestellt.

Die heutige Reihenfolge der Herstellungsschritte ist:

  1. Bohren
  2. Durchkontaktieren (bei doppelseitigen Leiterplatten)
  3. Fotoresist laminieren
  4. Belichten
  5. Entwickeln
  6. Ätzen
  7. Spülen
  8. Trocknen

Danach folgen je nach Bedarf Nachbearbeitungsschritte.

Ursprünglich wurde das Bohren und Durchkontaktieren erst nach dem Ätzen der Leiterplatte vorgenommen. Seitdem aber der Fotolack durch sog. Trockenresist, eine fotoempfindliche Folie, ersetzt wurde, wurde die Reihenfolge der Produktionsschritte verändert. Vorteil ist, dass nun nicht mehr vor dem Durchkontaktieren eine Maske auf die Platine aufgebracht werden muss, die das Aufwachsen des Kupfers an unerwünschten Stellen verhindert. Da zu diesem Zeitpunkt noch die gesamte Leiterplatte von Kupfer bedeckt ist, erhöht sich nur die Schichtdicke der Kupferfolie. Die metallisierten Bohrungen werden während des Ätzvorganges von der Fotoresistfolie beidseitig abgeschlossen.

Die Herstellung der Leiterbahnen erfolgt in der Regel fotolithografisch, indem eine dünne Schicht lichtempfindlichen Fotolacks auf die Oberfläche der noch vollständig metallisierten Platte aufgebracht wird. Nach der Belichtung des Fotolacks durch eine Maske mit dem gewünschten Platinenlayout sind je nach verwendetem Fotolack entweder die belichteten oder die unbelichteten Anteile des Lacks löslich in einer passenden Entwicklerlösung und werden entfernt. Bringt man die so behandelte Leiterplatte in eine geeignete Ätzlösung (z. B. in Wasser gelöstes Eisen(III)-chlorid oder Natriumpersulfat oder mit Salzsäure + Wasserstoffperoxid<ref>Forschungszentrum Karlsruhe 1996 Stoffströme bei der Herstellung von Leiterplatten Max. Betriebs-
temperatur
2 Cu 34,49 20,19 20,1 Al 00,26 05,7 13,5 Fe 10,57 07,33 07,09 Zn 05,92 04,48 02,18 Pb 01,87 05,53 01,16 Sn 03,39 08,83 00,62 Ni 02,63 00,43 00,73 Ag 00,21 00,16 00,027 Au 00 00,13 00,003

Siehe auch

Literatur

  • Günther Hermann (Hrsg.): Handbuch der Leiterplattentechnik – Laminate – Manufacturing – Assembly – Test. 2. Auflage. Eugen G. Leuze Verlag, Saulgau/Württ. 1982, ISBN 3-87480-005-9
  • Günther Hermann (Hrsg.): Handbuch der Leiterplattentechnik – Band 2: Neue Verfahren, neue Technologien. Eugen G. Leuze Verlag, Saulgau/Württ. 1991, ISBN 3-87480-056-3
  • Günther Hermann (Hrsg.): Handbuch der Leiterplattentechnik – Band 3: Leiterplattentechnik, Herstellung und Verarbeitung, Produkthaftung, Umweltschutztechnik mit Entsorgung. Eugen G. Leuze Verlag, Saulgau/Württ. 1993, ISBN 3-87480-091-1
  • Günther Hermann (Hrsg.): Handbuch der Leiterplattentechnik – Band 4: Mit 112 Tabellen. Eugen G. Leuze Verlag, Saulgau/Württ. 2003, ISBN 3-87480-184-5
  • H.-J. Hanke (Hrsg.): Baugruppentechnologie der Elektronik – Leiterplatten. Technik Verlag, Berlin 1994, ISBN 3-341-01097-1

Weblinks

Commons Commons: Leiterplatten – Sammlung von Bildern, Videos und Audiodateien
Wiktionary Wiktionary: Leiterplatte – Bedeutungserklärungen, Wortherkunft, Synonyme, Übersetzungen

Einzelnachweise

<references />