RGB-Farbraum


aus Wikipedia, der freien Enzyklopädie
Wechseln zu: Navigation, Suche

Ein RGB-Farbraum ist ein additiver Farbraum, der Farbwahrnehmungen durch das additive Mischen dreier Grundfarben (Rot, Grün und Blau) nachbildet. Das Farbsehen des Menschen ist von drei Zapfentypen geprägt. Dieser Farbraum basiert im Prinzip auf der Dreifarbentheorie.

Grundlagen

Nach ersten Untersuchungen und Überlegungen zum Phänomen „Farbsehen“ im 18. Jahrhundert führten vor allem wissenschaftliche Untersuchungen im 19. Jahrhundert zu ersten quantitativen Theorien. Eine davon ist die Dreifarbentheorie. Man kann fast alle Farbreize durch das Mischen dreier Primärfarben nachbilden. Das Licht kann mit dem Spektrometer völlig unterschiedlich zwischen dem ursprünglichen Reiz und dem nachgebildeten Reiz zusammengesetzt sein. Das menschliche Auge kann dies nicht unterscheiden, die beiden Farben sind metamer. Kann man beide Farbreize nicht unterscheiden, so ist es auch nicht notwendig, die genaue spektrale Verteilung für eine Rekonstruktion der Farbtöne zu speichern. Um diesen Farbreiz nachzubilden, reicht es aus, ein Zahlentripel zu speichern, das die Menge an rotem, grünem und blauem Licht beschreibt. Genau so wird eine Farbe im RGB-Raum beschrieben. Ist ein Rot, ein Grün und ein Blau in maximaler Intensität definiert, so können der Rotanteil R, der Grünanteil G und der Blauanteil B die Farbe beschreiben: Farbe = (R, G, B)

Den RGB-Farbraum kann man als linearen Raum, anschaulich als Farbwürfel, darstellen.

Die Wertebereiche für die Farbreize (R, G, B) können unterschiedlich festgelegt sein. Die klassische Darstellung lässt Werte zwischen 0 und 1 (d.h. 0 Prozent und 100 Prozent) zu. Dies orientiert sich an der praktischen klassischen Realisierung mittels Dämpfung vorhandenen Lichts. Computerorientierte Anwendungen verwenden häufig die an der klassischen Form der Abspeicherung angelehnte Schreibweise, es werden Ganzzahlen zwischen 0 und einer Maximalzahl abgespeichert. Solche üblichen Maximalzahlen sind 7, 31, 255, 1023, 4095, 16383, 65535.

Da die Intensitätswahrnehmung des Menschen nach der Weber-Fechner-Regel nichtlinear ist, wird meist eine nichtlineare Kodierung für die Luminanz vorgenommen. Diese bezeichnet man häufig als Gamma-Funktion, da die ersten Implementierungen die Potenzfunktion Y ~ L1/γ als Ansatz nutzten. Der Koeffizient Gamma mit γ > 1 beschreibt die Krümmung der Kurve. Die inverse Funktion ist L ~ Y γ.

Das Koordinatensystem hat neben dieser nichtlinearen Kodierung insgesamt 9 Freiheitsgrade, die für einen konkreten RGB-Raum festzulegen sind. Diese kann man verschieden angeben, was zu Verwirrungen beim Anwender führen kann. Für alle drei Primärvalenzen gibt es verschiedene Möglichkeiten

  • mittels der Normfarbtafel (x,y) unter Zusatz des Weißpunkts als Referenzhelligkeit
  • mittels der Matrix (Y,x,y) mit den Normfarbwertanteilen x und y und des Normfarbwertes Y, der hier als Maß für die Helligkeit dient
  • mittels der Matrix (X,Y,Z) und somit aller drei Normfarbwerte X, Y, Z, basierend auf den 1931 von der CIE festgelegten Spektralwertfunktionen.
Datei:CIE-Normfarbtafel.png
Die CIE-Normfarbtafel mit eingezeichnetem Adobe-RGB-(1998)-Farbraum: Die Farbendarstellung der Grafik dient nur zur Orientierung. Der Adobe-RGB-(1998)-Farbraum umfasst nur die Farben innerhalb des eingezeichneten Dreiecks und enthält einen beträchtlichen Anteil wahrnehmbarer Farben nicht.

Moderne computerorientierte Applikationen und Schnittstellen verwenden zumindest intern immer mehr Gleitkommazahlen, die sowohl aus dem Intervall auf 8-Bit-Werte (bzw. 10-Bit-Werte) ist entsprechend anzupassen.

Einzelnachweise