Weltraum


aus Wikipedia, der freien Enzyklopädie
Wechseln zu: Navigation, Suche
Datei:Atmosphere layers-de-3.svg
Schichten der Atmosphäre (nicht maßstabsgetreu)<ref>Layers of the Atmosphere (englisch). Webseite des National Weather Service, 5. Januar 2010. Abgerufen am 3. November 2010.</ref>

Der Weltraum bezeichnet den Raum zwischen Himmelskörpern. Die Atmosphären von festen und gasförmigen Himmelskörpern (wie Sternen und Planeten) haben keine feste Grenze nach oben, sondern werden mit zunehmendem Abstand zum Himmelskörper allmählich immer dünner. Ab einer bestimmten Höhe spricht man vom Beginn des Weltraums.

Im Weltraum herrscht ein Hochvakuum mit niedriger Teilchendichte. Er ist aber kein leerer Raum, sondern enthält Gase, Staub und Elementarteilchen (Neutrinos, kosmische Strahlung, Partikel), außerdem elektrische und magnetische Felder, Gravitationsfelder und elektromagnetische Wellen (Photonen). Dadurch, dass im Weltraum nahezu Vakuum herrscht, ist er außerordentlich durchsichtig und erlaubt die Beobachtung extrem entfernter Objekte, etwa anderer Galaxien.

Der Begriff des Weltraums ist nicht gleichzusetzen mit dem Weltall, welches eine eingedeutschte Bezeichnung für das Universum insgesamt ist und somit alles, also auch die Sterne und Planeten selbst, mit einschließt. Dennoch wird das deutsche Wort „Weltall“ oder „All“ umgangssprachlich (eigentlich inkorrekt) mit der Bedeutung „Weltraum“ verwendet.

Beginn des Weltraums

Der Übergang zwischen Erde und Weltraum ist fließend. Die Fédération Aéronautique Internationale (FAI) definiert die Grenze zum Weltraum bei 100 Kilometern Höhe über dem Meeresspiegel, der Kármán-Linie. In dieser Höhe ist die Geschwindigkeit, die benötigt wird, um Auftrieb zum Fliegen zu erhalten, gleich hoch wie die Umlaufgeschwindigkeit eines Satelliten, so dass man oberhalb dieser Linie nicht mehr sinnvoll von „Luftfahrt“ sprechen kann.<ref>100 km Altitude Boundary for Astronautics in: fai.org astronautics</ref> Davon abweichend definiert die US Air Force bereits die Höhe von 50 Meilen (~80 km) als Beginn des Weltraums. Beide als Grenzen vorgeschlagenen Höhen liegen in der Hochatmosphäre der Erdatmosphäre. Eine völkerrechtlich verbindliche Höhengrenze zum Weltraum gibt es nicht.

Reisen oder Transporte in oder durch den Weltraum werden als Raumfahrt bezeichnet.

Weltraumrecht

Hauptartikel: Weltraumrecht

Der Teilbereich des Rechts, der einen Bezug zu nationalen und internationalen Aktivitäten im Weltraum hat, wird Weltraumrecht genannt.

Der von den Vereinten Nationen 1967 verabschiedete Weltraumvertrag (Vertrag über die Grundsätze zur Regelung der Tätigkeiten von Staaten bei der Erforschung und Nutzung des Weltraums einschließlich des Mondes und anderer Himmelskörper - Treaty on Principles Governing the Activities of States in the Exploration and Use of Outer Space, including the Moon and Other Celestial Bodies) ist das grundlegende Vertragswerk des Weltraumrechts.

Bereiche

Es gibt im Weltraum große Unterschiede zwischen dem erdnahen Weltraum, dem interplanetaren Raum, dem interstellaren Raum, dem intergalaktischen Raum und den Voids.

Erdnaher Weltraum

Datei:Magnetosphere blank base.jpg
Die Magnetosphäre schirmt die Erde gegen die geladenen Partikel des Sonnenwindes ab. Auf der Tagseite entsteht durch den Sonnenwind eine zusammengepresste Bugwelle, auf der Nachtseite ein langer Magnetschweif.

Der erdnahe Weltraum, englisch Geospace genannt, wird vom Erdmagnetfeld (und nicht vom Magnetfeld der Sonne) dominiert. Er reicht von den oberen Regionen der Atmosphäre bis an die Grenze der irdischen Magnetosphäre. Diese misst auf der Sonnenseite etwa zehn Erdradien (etwa 60.000 km), auf der Nachtseite in Form eines langen Schweifs etwa hundert Erdradien (600.000 km). Die irdische Magnetosphäre lenkt den von der Sonne abströmenden Sonnenwind um die Erde herum ab und schützt sie so vor dem größten Teil des für Lebewesen gefährlichen Teilchenstroms. Nur ein kleiner Teil des Sonnenwinds gelangt in Polnähe in die Erdatmosphäre und wird dort als Polarlicht sichtbar.

Veränderungen des interplanetaren Mediums in dieser Zone werden als Weltraumwetter bezeichnet. Hauptsächliche Ursachen sind Veränderungen im Sonnenwind und der kosmischen Strahlung der Milchstraße. Durch diese Einflüsse gelangen in unregelmäßigen Abständen verstärkt Materie, Teilchen- und Strahlungsströme in das Umfeld der Erde.

Nicht alle Himmelskörper haben solche Magnetfelder. So ist zum Beispiel der Mond dem Sonnenwind schutzlos ausgesetzt.

Interplanetarer Raum

Datei:Voyager 1 entering heliosheath region.jpg
Heliosphäre unter Einfluss des interstellaren Gases. Eingezeichnet sind Voyager 1 und Voyager 2. Voyager 1 hat inzwischen die Helopsphäre verlassen.
Hauptartikel: Interplanetarer Raum

Der interplanetare Raum ist der vom interplanetaren Staub, vom Sonnenwind und dem Magnetfeld der Sonne erfüllte Raum in unserem Sonnensystem. Das Magnetfeld der Sonne interagiert mit dem Sonnenwind und bestimmt maßgeblich seinen Fluss. Umgekehrt leitet und verstärkt aber auch der Sonnenwind als elektrisch leitendes Plasma das Magnetfeld der Sonne.

Der interplanetare Raum ist der Raum innerhalb der Heliosphäre bis zur Grenzschicht der Heliopause. Die Heliosphäre hat einen geschätzten Radius von etwa 110 bis 150 AE und schützt das Sonnensystem und die Planeten wiederum vor sehr energiereichen Teilchen der kosmischen Strahlung.

Interstellarer Raum

Datei:Hubble sees a cosmic caterpillar.jpg
Interstellare Gas- und Staubwolke mit einer Länge von ca. 1 Lichtjahr<ref>Hubble sees a cosmic caterpillar. In: Image Archive. ESA/Hubble. Abgerufen am 9. September 2013.</ref>
Datei:Heic1501a.png
Dunkle Sternengeburtsstätten im Adlernebel
Hauptartikel: Interstellarer Raum

Der interstellare Raum bezeichnet den Raum innerhalb einer Galaxie zwischen den Astropausen der Sterne. Er ist von der interstellaren Materie und vom galaktischen Magnetfeld erfüllt. Die interstellare Materie spielt eine wesentliche Rolle in der Astrophysik, da aus ihr Sterne entstehen, die mit Sternwinden und Supernovae auch wieder Materie in den interstellaren Raum abgeben.

Es gibt im interstellaren Raum Regionen mit höherer Teilchendichte, die interstellare Wolken genannt werden. Man unterscheidet nach ihrer Dichte, Größe und Temperatur verschiedene Typen solcher Wolken: in H-I-Gebieten liegt der Wasserstoff neutral atomar vor, in H-II-Gebieten ionisiert atomar (ein Plasmazustand aus einzelnen Protonen), und in Molekülwolken als molekularer Wasserstoff (H2). Durch gravitative Zusammenziehung entstehen aus Molekülwolken neue Sternensysteme. Auch unser Sonnensystem ist aus einer solchen Wolke entstanden, der Urwolke.

Die Materiedichte im interstellaren Medium kann stark variieren. Im Durchschnitt beträgt sie etwa 106 Teilchen pro Kubikmeter, aber in kalten Molekülwolken kann sie 108 bis 1012 Teilchen pro Kubikmeter betragen.

An den Grenzen der Astropausen können, wenn die Geschwindigkeit des Sterns relativ zum interstellaren Medium groß genug ist, Stoßfronten (englisch Bow Shocks) auftreten. Im Fall der Sonne ist die Geschwindigkeit hierfür vermutlich zu gering, so dass am Termination Shock nur eine relativ sanfte Stoßwelle angenommen wird.<ref name="zank">G. P. Zank, et al. – HELIOSPHERIC STRUCTURE: THE BOW WAVE AND THE HYDROGEN WALL (2013)</ref>

Am 12. September 2013 verkündete NASA, dass die Raumsonde Voyager 1 am 25. August 2012 die Heliosphäre verlassen habe, als sie einen plötzlichen Anstieg der Plasmadichte registrierte. Voyager 1 hat demnach als erstes menschengeschaffenes Objekt den interstellaren Raum erreicht.<ref>NASA Spacecraft Embarks on Historic Journey Into Interstellar Space (abgerufen im September 2013)</ref>

Die Sonne durchquert seit ca. 100.000 Jahren eine Region im interstellaren Raum mit höherer Dichte, die Lokale Flocke, und wird diese voraussichtlich in 10.000 bis 20.000 Jahren wieder verlassen. Die Lokale Flocke befindet sich innerhalb der Lokalen Blase, einer Region der Milchstraße mit wenig interstellarer Masse.

Intergalaktischer Raum

Datei:Large-scale structure formation.gif
Computersimulation eines Raums von 43x43x43 Megaparsec. Sie zeigt im logarithmischen Zeitraffer, wie sich Regionen größerer Materiedichte durch Gravition zusammenziehen und zugleich kosmische Voids entstehen.
Hauptartikel: Intergalaktisches Medium

Der intergalaktischer Raum ist der Raum zwischen Galaxien. Der größte Teil des Universums ist intergalaktischer Raum. Das intergalaktische Medium besteht hauptsächlich aus ionisiertem Wasserstoff-Gas/-Plasma (HII), also gleichen Mengen freier Protonen und Elektronen.

Das intergalaktische Medium zwischen den Galaxien ist nicht gleichförmig verteilt, sondern liegt in fadenförmigen Verbindungen, den Filamenten, vor. In deren Knotenpunkten befinden sich Galaxienhaufen und Superhaufen. Zwischen den Filamenten gibt es riesige Leerräume mit sehr viel geringerer Materiedichte, genannt Voids. Die Voids enthalten nur wenige Galaxien. Die Filamente und Voids sind die größten Strukturen im Universum.

Das intergalaktische Medium wird in zwei Arten eingeteilt. Das Gas, das aus den Voids in den Bereich der Filamente strömt, heizt sich dabei auf Temperaturen von 105 K bis 107 K auf. Dies ist heiß genug, dass bei Kollisionen von Atomen die Elektronen von den Wasserstoffkernen getrennt werden, weshalb es als ionisiertes Plasma vorliegt. Dieses wird das Warm-Hot Intergalactic Medium (warm-heiße intergalaktische Medium, WHIM) genannt. (Obwohl das Plasma nach irdischen Standards sehr heiß ist, wird in der Astrophysik 105 K oft als „warm“ bezeichnet.) Computersimulationen und Beobachtungen deuten an, dass bis zur Hälfte aller atomaren Masse im Universum in diesem verdünnten, warm-heißen Plasmazustand existiert.

Dort, wo Gas von den Filamentenstrukturen des WHIM in die Knotenpunkte der kosmischen Filamente strömt, heizt es sich noch weiter auf und erreicht Temperaturen von 108 K bis 108 K, manchmal auch darüber. Dieses intergalaktische Medium wird Intracluster-Medium (ICM) genannt. Es ist durch seine starke Emission von Röntgenstrahlung beobachtbar.

Temperatur des Weltraums

Dem Raum selbst lässt sich keine Temperatur zuordnen, sondern nur seiner Materie und der in ihm wirkenden Strahlungen. Die (sehr dünn verteilte) Materie im Weltraum kann sehr hohe Temperaturen aufweisen. Die irdische Hochatmosphäre erreicht Temperaturen von ca. 1400 Kelvin. Das intergalaktische Plasma-Gas mit einer Dichte von weniger als einem Wasserstoffatom pro Kubikmeter kann Temperaturen von mehreren Million Kelvin erreichen.<ref name="wdp">Wie kalt ist das Weltall?, abgerufen am 22. September 2015</ref> Die hohe Temperatur resultiert aus der Geschwindigkeit der Teilchen. Ein gewöhnliches Thermometer würde allerdings Temperaturen nahe dem absoluten Nullpunkt anzeigen, da die Teilchendichte viel zu gering ist, um einen messbaren Wärmetransport zu bewirken.

Die Temperatur der Hintergrundstrahlung beträgt derzeit 2,7 Kelvin (also etwa −270 °C). Sie spielt jedoch keine Rolle für die Temperatur der Materie im Weltraum. Die kältesten Regionen im Weltraum wurden in dunklen Molekülwolken gefunden und betragen wenige zehn Kelvin.<ref name="wdp" />

Festkörper im erdnahen oder interplanetaren Weltraum erfahren auf ihrer sonnenzugewandten Seite große Strahlungswärme. Auf ihrer sonnenabgewandten Seite, oder wenn sich die Körper im Erdschatten befinden, erfahren sie dagegen große Kälte, weil sie dort ihre Wärmeenergie selbst in den Weltraum abstrahlen. Beispielsweise wird der Raumanzug eines Astronauten, der bei der Internationalen Raumstation einen Außenbordeinsatz unternimmt, auf der sonnenzugewandten Seite etwa 100 °C heiß. Auf der Nachtseite der Erde ist die Sonnenstrahlung abgeschattet, und die schwache Infrarotstrahlung der Erde lässt den Raumanzug auf etwa −100 °C abkühlen.<ref>Wie warm ist es im Weltraum?, abgerufen am 22. September 2015</ref>

Weltraum und Schwerelosigkeit

Entgegen einer häufigen Laienvorstellung herrscht im Weltraum keinesfalls pauschal Schwerelosigkeit. Die Gravitationskraft der gegenseitigen Anziehung von Massen wirkt überall und über weiteste Distanzen. Schwerelosigkeit tritt im Weltall immer dann auf, wenn ein Körper ausschließlich gravitative Beschleunigungen erfährt, so dass er im freien Fall ist. Gegebenenfalls führt der freie Fall den Körper auf einer Umlaufbahn um einen Himmelskörper herum.

Immer dann, wenn ein Raumflugkörper aus eigenem Antrieb beschleunigt oder bremst, ist er nicht mehr im freien Fall und es wird eine Beschleunigungskraft (g-Kraft) spürbar. Ein rotierender Körper erfährt außerdem eine seiner Größe und Rotationsgeschwindigkeit entsprechende Zentrifugalkraft. Beide Kräfte werden durch die Trägheit des Körpers verursacht.

Auch immer dann, wenn ein Körper in seinem Fall gehemmt wird, erfährt durch eine Gegenkraft Schwere. Bei einem Planeten oder Mond ohne Atmosphäre (etwa dem Erdmond) reicht der Weltraum bis zum Boden. Alle Objekte auf der Oberfläche des Himmelskörpers befinden sich somit auch zugleich im Weltraum. Da ihr Fall durch den Boden gehemmt wird, erfahren sie keine Schwerelosigkeit, sondern die normale Schwerkraft des Himmelskörpers.

Raumflugkörper

Datei:First photo from space.jpg
Erstes Foto aus dem Weltraum, aus ca. 105 km Höhe von einer modifizierten White-Sands-A4 aufgenommen, 24. Oktober 1946

Die Geschichte der Raumfahrt beginnt mit der Entwicklung der Rakete und der Raketentechnik, insbesondere von Raketentriebwerken.

Die ersten von Menschen geschaffenen Objekte, das die Grenze zum Weltraum durchstießen, waren ballistische Artillerie-Raketenwaffen vom Typ Aggregat 4 (kurz „A4“), die im Zweiten Weltkrieg vom Deutschen Reich unter der Leitung von Wernher von Braun entwickelt und ab 1942 kriegerisch eingesetzt wurden. Die NS-Propaganda taufte dieses Raketenmodell im Jahr 1944 „Vergeltungswaffe 2“, kurz „V2“.

Mit der Operation Overcast und nachfolgender Programme wurden nach dem Zweiten Weltkrieg die führenden deutschen Raketentechniker einschließlich Wernher von Braun in die USA übersiedelt. Mit der erbeuteten Technik der A4 und den deutschen Ingenieuren begannen die US-amerikanischen Raumfahrtentwicklungen.

Die Sowjetische Raumfahrt nahm ebenfalls ihren Beginn in der deutschen A4-Rakete, die nach 1945, begleitet von einer Reihe von Raketen-Ingenieuren, als Kriegsbeute in die Sowjetunion kam. Unter Sergei Pawlowitsch Koroljow wurde zunächst das A4 nachgebaut, dann ab 1950 die weltweit erste Interkontinentalrakete und Trägerrakete R-7 entwickelt und diese ab 1953 eingesetzt. Mit einer R-7 startete auch 1957 der erste künstliche Erdsatellit Sputnik 1.

Unter der Leitung Wernher von Brauns wurde für die zivile US-Bundesbehörde NASA im Rahmen des US-amerikanischen Apollo-Programms die Familie der Saturn-Raketen entwickelt. Mit diesen leistungsstarken Trägerraketen, deren Einsatz 1961 begann und 1975 endete, wurden zum ersten und bisher einzigen Mal Menschen weiter als in eine niedrige Erdumlaufbahn gebracht. Insgesamt wurden mit Saturn-Raketen 24 Astronauten zum Mond geflogen.

Neben Raketen sind weitere Arten von Raumflugkörpern: künstliche Satelliten, Raumsonden, Raumfähren, Raumflugzeuge, Raumschiffe und Raumstationen.

Der Mensch im Weltraum

Die bemannte Raumfahrt begann im Zeitalter des Kalten Krieges während des „Wettlaufs ins All“ zwischen den verfeindeten Supermächten USA und Sowjetunion. Der Start des ersten künstlichen Erdsatelliten Sputnik 1 hatte mit dem „Sputnikschock“ 1957 klargemacht, dass die Sowjetunion in der Entwicklung ihrer Raumfahrt technologisch den USA mindestens ebenbürtig war. Der erste Mensch im Weltraum war am 12. April 1961 der sowjetische Kosmonaut Juri Gagarin. Der erste US-Astronaut im All war wenige Wochen später, am 5. Mai 1961, Alan Shepard.

Die erste (und für lange Zeit die einzige) Frau im Weltraum war 1963 Walentina Wladimirowna Tereschkowa; der erste Deutsche Sigmund Jähn; der erste Österreicher 1991 Franz Viehböck, und der erste (und bisher einzige) Schweizer 1992 Claude Nicollier.

Alexei Leonow war 1965 der erste Mensch, der in einem Raumanzug sein Raumschiff verließ und bei einem Außenbordeinsatz frei im Weltraum schwebte.

Obwohl Projekte der zivilen Raumfahrt, etwa der NASA oder ESA, stark im Licht der Öffentlichkeit stehen, dominiert bis heute die militärische Raumfahrt deutlich die zivile.

Siehe auch

Einzelnachweise

<references />