Aerosol


aus Wikipedia, der freien Enzyklopädie
Wechseln zu: Navigation, Suche
Dieser Artikel wurde den Mitarbeitern der Redaktion Physik zur Qualitätssicherung aufgetragen. Wenn Du Dich mit dem Thema auskennst, bist Du herzlich eingeladen, Dich an der Prüfung und möglichen Verbesserung des Artikels zu beteiligen. Der Meinungsaustausch darüber findet derzeit nicht auf der Artikeldiskussionsseite, sondern auf der Qualitätssicherungs-Seite der Physik statt.

Ein Aerosol [aeʁoˈzoːl] (Kunstwort aus lateinisch aer „Luft“ und lateinisch solutio „Lösung“) ist ein heterogenes Gemisch (Dispersion) aus festen oder flüssigen Schwebeteilchen in einem Gas. Das Verhalten eines Aerosols hängt immer von den Teilchen und dem Trägergas ab. Die Schwebeteilchen heißen Aerosolpartikel oder Aerosolteilchen. Ein Aerosol ist ein dynamisches System und unterliegt ständigen Änderungen durch Kondensation von Dämpfen an bereits vorhandenen Partikeln, Verdampfen flüssiger Bestandteile der Partikel, Koagulation kleiner Teilchen zu großen oder Abscheidung von Teilchen an umgebenden Gegenständen.

Arten, Entstehung und Vorkommen

Einteilung

Datei:Aerosol-Definitionen.svg
Aeorosole können aus festen und flüssigen Teilchen bestehen; je nach Ursprung der Teilchen wird zwischen primären und sekundären Aerosolen unterschieden.

Aerosole lassen sich auf verschiedene Weisen in Kategorien einteilen. Kriterien können die Entstehung der Aerosolteilchen, ihre Materialeigenschaften (fest oder flüssig) oder ihre Wirkung (Kondensationskeime) sein. Prinzipiell ist der Übergang zwischen allen solchen Kategorien fließend.

Aerosole können ebenso wie Staub auf viele unterschiedliche Weisen entstehen. In der Meteorologie sind Kondensationsaerosole von großer Bedeutung. Deren Teilchen bilden sich spontan durch Kondensation oder Resublimation aus übersättigten Gasen.

In Abhängigkeit von dem Ursprung der Teilchen lässt sich zwischen primären und sekundären Aerosolen unterscheiden. Die Teilchen der primären Aerosole stammen meistens aus mechanischen oder thermischen Prozessen. Bei den sekundären Aerosolen haben sich die Teilchen aus gasförmigen Stoffen durch chemische Reaktion und/oder durch Anlagerung der Reaktionsprodukte an Kondensationskerne gebildet.

Beispiele

Aerosole finden sich in vielen Bereichen der Umgebung.:

  • Staub in der Raumluft
  • Zigarettenrauch
  • Nebel aus einer Spraydose
  • Ruß oder Ölqualm aus einem Autoauspuff
Datei:Sekundäre Aerosole.png
Wichtige sekundäre Prozesse der atmosphärischen Partikelbildung und die geschätzte jährliche Bildungsmenge<ref>nach Andreae 1994 (1)</ref> in Millionen Tonnen für verschiedene Partikel

Unsere Erdatmosphäre enthält stets Aerosole und Aerosolteilchen unterschiedlichen Typs und unterschiedlicher Konzentration. Dazu zählen

Verbreitung

Aerosolpartikel sind kleine Partikel, die überall in der Luft vorkommen. Sie sind so klein, dass sie einzeln mit bloßem Auge nicht sichtbar sind. Sichtbar werden sie je nach Größe bei sehr hoher Konzentration ab 10.000-100.000 Partikel pro Kubikzentimeter, die bei Herkunft aus anthropogenen Quellen als Smog bezeichnet wird. Der Durchmesser von Aerosolpartikeln liegt zwischen 0,5 nm und mehreren 10 μm. Am oberen Ende dieses Bereiches liegen beispielsweise größere Pollen.

Ab einer bestimmten Luftfeuchtigkeit kondensiert das Wasser in der Luft an den Partikeln und es beginnen sich Tröpfchen zu bilden. Je höher die Luftfeuchtigkeit, desto größer werden die Tröpfchen. Bei einer hohen Luftfeuchtigkeit stoßen sie zusammen, es kommt zur Wolkenbildung und letztendlich zum Regen. Man bezeichnet Aerosolpartikel daher als Wolkenkondensationskeime.

Die Konzentration der Partikel ist je nach Ort unterschiedlich und nimmt mit der Höhe ab. Zehn Kilometer über dem Erdboden finden sich nur ein Zehntausendstel des Wertes am Boden, der bei etwa zehn Mikrogramm Aerosolpartikel pro Kilogramm Luft liegt. Insbesondere Vulkanausbrüche können die Konzentrationen von Aerosolen bis hinauf in die Stratosphäre stark erhöhen und neben dem Wetter auch den Flugverkehr beeinflussen. Gegenwärtig wird der klimatische Einfluss von Wüstenstaub intensiv erforscht. Messungen im Bereich der Sahara zeigten unter anderem deutliche Einflüsse auf den atmosphärischen Strahlungstransfer, die berechneten Klimawirkungen weisen jedoch noch große Unsicherheiten auf. Typischerweise besteht Wüstenstaub aus vergleichsweise großen Partikeln und bildet beim Transport eine klar abgegrenzte, mehrere Kilometer dicke Aerosolschicht.<ref name="diewuesteschwebt" />

So wie der Wind, besonders wenn er Turbulenzen bildet, Boden mobilisiert (äolische Bodenerosion), kann er zur Bodenoberfläche abgesunkene Aerosolpartikel ständig neu mobilisieren. Je nach Windrichtung, Windstärke und meteorologischer Situation kann der Wind Aerosole großflächig verteilen. Ein dramatisches Beispiel dafür ist die großflächige Verteilung radioaktiver Aerosole nach der Nuklearkatastrophe von Tschernobyl im Jahr 1986, die vom Wind in Wolken transportiert wurden und als radioaktiver Niederschlag große Teile Europas kontaminierten.

Partikelarten und deren Herkunft

Aerosolpartikel haben viele unterschiedliche Zusammensetzungen, die auf ihre Eigenschaften und Herkunft schließen lassen. Kleinste (Sub-)Partikel sind einzelne Moleküle, selten größer als 1 nm, die bei Verbrennungen, aber auch als Stoffwechselprodukt von Pflanzen und Tieren (zum Beispiel Terpene) entstehen. Sie reagieren in der Erdatmosphäre schnell mit anderen Molekülen oder auch größeren Partikeln. Aerosolpartikel entstehen, wenn sich mehrere Moleküle zu einem Partikel mit festen Aggregatzustand verbinden.

Hochofenemissionen bestehen zum größten Teil aus Ruß, aber auch aus verschiedenen Sulfaten und Nitraten. Das Größenspektrum dieser Partikel liegt zwischen 1 und 1.000 nm. Sie entstehen zum Beispiel bei der Verhüttung von Metallen oder als Ausstoß von Kohlekraftwerken, aber auch durch Autoabgase. Ähnlich wie Hochofenemissionen bestehen auch Rauchpartikel zum größten Teil aus Ruß. Sie entstehen in hohem Maße bei offenen Feuern und Waldbränden.

Partikel aus Mineralstaub gehen vor allem auf die Erosion von Gesteinen zurück, große Mengen Mineralstaubpartikel entstehen zum Beispiel bei Sandstürmen. Aerosolpartikel aus Meersalz entstehen, wenn durch den Wind kleine Salzwassertröpfchen vom Meer aufgewirbelt werden. Das Wasser verdunstet anschließend, und zurück bleibt ein Meersalzpartikel.

Als Bioaerosol werden in der Standardisierung alle im Luftraum befindlichen Ansammlungen von Partikeln, denen Pilze, Bakterien, Viren oder Pollen sowie deren Zellwandbestandteile und Stoffwechselprodukte (z. B. Mykotoxine) anhaften, bezeichnet.<ref>VDI 4250 Blatt 1:2014-08 Bioaerosole und biologische Agenzien; Umweltmedizinische Bewertung von Bioaerosol-Immissionen; Wirkungen mikrobieller Luftverunreinigungen auf den Menschen (Bioaerosols and biological agents; Risk assessment of source-related ambient air measurements in the scope of environmental health; Effects of bioaerosol pollution on human health). Beuth Verlag, Berlin. S. 5.</ref> Im weiteren Sinne werden sämtliche Teile biologischer Herkunft, wie zum Beispiel Hautschuppen oder Faserteile, zu den Bioaerosolpartikeln gezählt.<ref>Wolfgang Mücke, Christa Lemmen: Bioaerosole und Gesundheit. Wirkungen biologischer Luftinhaltsstoffe und praktische Konsequenzen. ecomed Medizin, 2008, ISBN 978-3-609-16371-0, S. 13.</ref> Zu den größeren Schwebeteilchen zählen mit aerodynamischen Durchmessern im Bereich von 10 µm bis 100 µm Pollen, während Viren sich in der Regel in einem Größenbereich von 0,02 µm bis 0,4 µm bewegen.<ref>Wolfgang Mücke, Christa Lemmen: Bioaerosole und Gesundheit. Wirkungen biologischer Luftinhaltsstoffe und praktische Konsequenzen. ecomed Medizin, 2008, ISBN 978-3-609-16371-0, S. 14.</ref>

Es gibt darüber hinaus zahlreiche weitere Arten von Aerosolpartikeln. Einige davon sind radioaktiv, andere stammen aus Einträgen kosmischen Staubs.

Um die Herkunft eines Partikels zu bestimmen, bedarf es einer genauen Analyse seiner Inhaltsstoffe. Während ihrer Zeit als Aerosol verändern sich die Partikel zudem ständig. Wenn Wasser an den Partikeln kondensiert und die vielen kleinen Tröpfchen immer größere bilden, reagieren viele Aerosolpartikel miteinander, oder es werden chemische Vorgänge in der Luft katalysiert, welche die Zusammensetzungen der Partikel verändern.

Eigenschaften

Die Eigenschaft von Partikeln, über längere Zeit in Gasen transportiert werden zu können, liegt darin, dass sie sich mit abnehmendem Durchmesser immer mehr wie Gas-Moleküle verhalten. Ihre maximale Sinkgeschwindigkeit haben Aerosole bei einem Gleichgewicht von Gravitation und Luftwiderstand. Eine Halbierung des Durchmessers eines Partikels entspricht der Verringerung seiner Masse und damit der ihn betreffenden Gravitation um den Faktor acht und eine Verringerung der Luftreibung im hierbei relevanten Stokes-Bereich um den Faktor zwei. Da die Luftreibung im Stokes-Bereich linear von der Geschwindigkeit abhängt, folgt daraus, dass bei Halbierung des Partikeldurchmessers die Sinkgeschwindigkeit mit dem Faktor vier abnimmt.

Der quadratische Zusammenhang gilt jedoch nur, solange die Partikel deutlich größer sind als die mittlere freie Weglänge des umgebenden Gases (in Luft 68 nm). Mit abnehmender Partikelgröße findet ein Übergang vom Kontinuum in den Bereich einer molekularen Strömung statt, wodurch der Strömungswiderstand eines Partikels langsamer fällt als nach dem Gesetz von Stokes zu erwarten. Die sich ergebende Sinkgeschwindigkeit ist daher größer als nach obigem Zusammenhang und zu ihrer Berechnung muss die Cunningham-Korrektur berücksichtigt werden.

Messung

Aerosolkonzentrationen werden mit Kernzählern bestimmt. Hierbei kann im einfachsten Fall eine bestimmte Luftmenge auf eine dünne Vaselineschicht einwirken und die Auswertung erfolgt mikroskopisch. Dabei wird in Abhängigkeit von der Korngröße unterschieden.

  • Aitken-Kerne: 0,01 bis 0,1 µm
  • große Kerne: 0,1 bis 2 µm
  • Riesenkerne: größer als 10 µm
Datei:Modis aerosol optical depth.png
Durchschnittliche Aerosol-optische Dicke 2005–2010, gemessen bei 550 nm mit MODIS des Satelliten Terra.

Weitere Messmethoden, bei denen Teilchen zur Wägung abgeschieden werden, sind Impaktoren oder Zentrifugen. Aerosolpartikel lassen sich in einem Luftstrom mit Hilfe einer radioaktiven Quelle (meist Krypton-85 oder Americium-241) definiert elektrisch aufladen und in einem differentiellen Mobilitätsanalysator (englisch differential mobility analyser, DMA) nach Größenklassen sortiert detektieren. Als Detektoren kommen entweder Kondensationspartikelzähler (englisch condensation particle counter, CPC) in Frage, bei denen die Partikel durch heterogene Kondensationsprozesse vergrößert und anschließend optisch detektiert werden, oder elektrische Detektoren, wie das Faraday Cup Electrometer (FCE).

Außerdem können Aerosolpartikel mit optischen Methoden vermessen werden. Das integrierende Nephelometer dient dazu, das gesamte von Aerosolpartikeln in einem Referenzvolumen gestreute Licht (einer bestimmten Wellenlänge) zu detektieren, polare Nephelometer analysieren das gestreute Licht zusätzlich je nach Streuwinkel. Einzelpartikelzähler analysieren das Streulicht einzelner Aerosolpartikel in einem Luftstrom und können so eine Größenverteilung liefern.

LIDAR-Systeme analysieren das „Lichtecho“ von in die Atmosphäre gesendeten Laserpulsen. Gemäß der Intensität und dem zeitlichen Abstand zum ausgesendeten Lichtpuls können die Aerosolschichtung in der Atmosphäre über mehrere Kilometer analysiert werden.

Die über die gesamte Atmosphäre integrierte aerosol optische Dicke (AOD, Funktion der Ångström Koeffizienten) lässt sich durch verschiedene fernerkundliche Verfahren ihrer raumzeitlichen Verbreitung kartieren. Dazu sind Annahmen bezüglich der Reflexionseigenschaften der Erdoberfläche zu treffen (zum Beispiel: Reflexion tiefer klarer Wasserflächen im nahen Infrarot ist gleich null). Solche Verfahren werden in der Fernerkundung eingesetzt, um die vom Satelliten aufgenommenen Bilder zu korrigieren.

Bedeutung

Wetter und Klima

Eine wichtige Rolle für das Wetter spielen hygroskopische Aerosolpartikel, die als Kondensationskerne fungieren und so die Tropfen- beziehungsweise Wolkenbildung anregen. Zudem gibt es Aerosolpartikel, die als Eiskeime dienen und zur Bildung von Eiskristallen führen (dies können Aerosolpartikel aus bestimmten Bakterien sein, wie sie in Schneekanonen verwendet werden). Eiskristalle sind in Wolken der Initiator für Niederschlagsbildung (das Prinzip wird durch den Bergeron-Findeisen-Prozess beschrieben). Aus diesem Grund wurden lange Zeit Silberiodid und andere Chemikalien eingesetzt, um durch künstliche Eiskeime das Abregnen von Wolken hervorzurufen. Besonders bei Hagelgefahr sollen die Hagelflieger auf diese Weise besonders „gefährliche“ Wolkenformationen entschärfen. Die Abwesenheit von Aerosolen wird in Nebelkammern genutzt und führt zur Übersättigung des Wasserdampfs von bis zu 800 Prozent.

Die Bedeutung von Aerosolen für das Klima beziehungsweise den Klimawandel ist noch wenig geklärt. Durch anthropogene Emissionen zeigen sich vor allem lokal teilweise sehr hohe Konzentrationssteigerungen und eine umfassende Luftverschmutzung (Smog). Dies kann den Strahlungshaushalt der Erde direkt oder indirekt (Wolkenbildung) beeinflussen und ist daher ein aktueller Schwerpunkt vieler Forschungsvorhaben.

Als verstärkender Faktor für die Bildung von Wolkenkondensationskeimen wird von einigen Wissenschaftlern die kosmische Strahlung vermutet. Ein Forscherteam um den Dänen Henrik Svensmark zeigte eine starke Korrelation mit der globalen Wolkendichte<ref> K. Scherer et al.: Interstellar-Terrestrial Relations: Variable Cosmic Environments, the dynamic heliosphere, and their Imprints on terrestrial archives and Climate. In: Space Science Reviews. 127, Nr. 1-4, 25. August 2007, S. 467, doi:10.1007/s11214-007-9167-5.</ref>, welche aber von anderen Wissenschaftlern angezweifelt wird. Zur Untersuchung des Einflusses der kosmischen Strahlung auf die Aerosolbildung in der Erdatmosphäre findet seit 2006 das CLOUD-Experiment am CERN statt, das einen geringen verstärkenden Effekt auf die Aerosolbildung in höheren Atmosphärenbereichen nachweisen konnte.<ref name="KirkbyN"> Jasper Kirkby et al.: Role of sulphuric acid, ammonia and galactic cosmic rays in atmospheric aerosol nucleation. In: Nature. 476, 25. August 2011, S. 429–433, doi:10.1038/nature10343.</ref> Es zeigte aber auch, dass der Prozess der Bildung von Wolkenkondensationskeimen nur unzureichend erklärt werden kann und weitere Forschungen auf diesem Gebiet notwendig sind.

Wirkung auf die Wolkenbildung

Ihre Rolle kommt den Aerosolpartikeln bei der Bildung von Wolkentröpfchen zu. Die Fähigkeit als Kondensationskern zu wirken hat jeder Partikel, das Maß dieser Fähigkeit wird durch die Zusammensetzung und die Größe des Partikels bestimmt. Je größer ein Partikel ist, desto mehr wasserlösliche Einzelkomponenten sind in ihm enthalten. Es ist somit mehr hydrophile Masse vorhanden, die Wasserdampf am Partikel kondensieren lässt. Bei Aerosolpartikeln, in denen keine hydrophilen Komponenten enthalten sind, wie zum Beispiel bei Ruß, kommt es auf die Oberfläche des Partikels an, wie gut Wasserdampf an ihm kondensieren kann. Je größer die Oberfläche des Aerosolpartikels, desto mehr Wasser kann an ihm kondensieren. Größere Partikel bilden früher Wolkentröpfchen als kleinere. Es kommt aber auch auf die Zusammensetzung der Partikel an. Wolkenkondensationskeime aus hydrophilen Mineralsalzen, wie zum Beispiel Ammoniumsulfat oder Ammoniumnitrat können schon ab 70 % Luftfeuchtigkeit Tröpfchen bilden, während hydrophobe Rußpartikel erst bei einer Luftfeuchtigkeitsübersättigung, also bei über 100 % Luftfeuchtigkeit, Tröpfchen bilden. In der Regel bilden alle Aerosolpartikel ab 103 % Luftfeuchtigkeit Tröpfchen. Gäbe es keine Aerosolpartikel, so wäre eine Übersättigung bis zu 300 % Luftfeuchtigkeit nötig, um eine Tröpfchenbildung herbeizuführen. In der Regel ist in Verbindung mit Aerosolpartikeln immer von relativer Luftfeuchtigkeit die Rede. Es wird auch untersucht, wie die Konzentration der Partikel auf die Wolkenbildung wirkt. Sobald die Kondensationskeime der Wolken Tröpfchen bilden, sinkt die Luftfeuchtigkeit, da das zuvor in der Luft gelöste Wasser an den Partikeln kondensiert hat, und die Tröpfchen hören irgendwann auf zu wachsen. Sind also nur wenige Partikel in der Luft, bilden sich große Tröpfchen, die dann mit großer Wahrscheinlichkeit auch zusammenstoßen, und es kommt schnell zu Regen. Sind hingegen viele Partikel vorhanden, bilden sich zahlreiche kleine Tröpfchen, deren Wahrscheinlichkeit zusammenzustoßen gering ist. Es bilden sich große Wolken, die kaum Regen abgeben. Dieser Effekt wird oft bei Waldbränden beobachtet, Pyrowolken wachsen manchmal bis zur Stratosphäre auf.

Wirkung auf das Klima

Bei Konzentrationen von durchschnittlich 10.000 Partikeln je Kubikzentimeter Luft haben Aerosolpartikel auch großen Einfluss auf das Klima. Sie haben jedoch nichts mit dem Treibhauseffekt zu tun, für den ausschließlich Gase verantwortlich sind. Wie genau Aerosole das Klima beeinflussen, ist derzeit nur unzureichend erforscht, was nicht zuletzt daran liegt, dass sie in vielen unterschiedlichen Bereichen wirksam sind. Allein ihr Anteil an der Wolkenbildung hat einen großen klimatischen Einfluss. Die klimatologische Eigenschaft der Partikel ist, ob sie Sonnenlicht absorbieren und dabei Wärme freisetzen (wie Ruß), oder ob sie das Licht reflektieren oder brechen, wie Salzpartikel. Es kommt dabei nicht nur auf diese Eigenschaften an sich an, sondern in welcher Höhe sie wirksam werden. In der Troposphäre sorgen Rußpartikel zum Beispiel für einen Temperaturanstieg, da sie das Sonnenlicht absorbieren und somit Wärmestrahlung abgeben. In der Stratosphäre hingegen fangen sie durch ihre Absorption das Licht ab, sodass weniger UV-Licht die Troposphäre erreicht und die Temperatur in der Troposphäre sinkt. Genau umgekehrt ist dieser Effekt bei Mineralpartikeln. Sie sorgen in der Troposphäre für deren Abkühlung, während sie für deren Erwärmung verantwortlich sind, wenn sie sich in der Stratosphäre befinden. Aerosolpartikel beeinflussen das Klima in einem sehr komplizierten System. Dieses System kann der Erderwärmung unter Umständen entgegenwirken, da die Erwärmung zur Verdunstung von mehr Wasser führt und damit zu mehr Wolken, die wiederum die Troposphäre abkühlen. Jüngste Forschungsergebnisse konnten einige Widersprüche im bisherigen Verständnis der Wirkung von Aerosolen beseitigen und den Kenntnisstand deutlich verbessern.<ref>Max-Planck-Institut für Chemie Mainz: Dreck in Maßen macht mehr Regen</ref>

Einfluss auf das Ozonloch

Wie schon bekannt ist, wird das Ozonloch maßgeblich von Fluorchlorkohlenwasserstoffen (FCKW) hervorgerufen. Diese Stoffe sind in der Troposphäre sehr stabil, spalten in der Stratosphäre Fluor- und Chlorradikale ab, die die Reaktion von Ozon (O3) zu Sauerstoff (O2) katalysieren. Für diese Abspaltung von Chlor- und Fluorradikalen in der Stratosphäre sind Aerosole verantwortlich, da die Reaktion nur auf der Oberfläche eines Aerosolpartikels stattfinden kann.

Saurer Regen

Als sauren Regen wird Regen bezeichnet, der aufgrund eines überhöhten Säuregehaltes (Schwefelsäure (H2SO4) und Salpetersäure (HNO3)) den pH-Wert des Niederschlagswassers herabsetzt und über die hierdurch unterstützte Bodenversauerung das Edaphon beeinflusst. Ursache des hohen Säuregehalts sind bestimmte Aerosole, wie zum Beispiel Nitrate (R-NO3), Sulfate (RSO4) und verschiedene Stickoxide. Sie reagieren mit anderen Aerosolen in der Luft, oder während der Tröpfchenbildung, zu Salpetersäure und Schwefelsäure. Hauptquellen für solche Aerosole sind die Abgase, die von Menschen verursacht werden. Zudem wurden in den 1970er Jahren, als weniger über die Entstehung des sauren Regens bekannt war, Rußfilter in die Schornsteine vieler Fabriken eingesetzt. So wurde zwar weniger sichtbarer Ruß freigesetzt, die unsichtbaren Stickoxide und andere säurebildende Aerosole wurden jedoch weiter ausgestoßen. In den 1990er Jahren wurden Verbrennungsgase daher zusätzlich entschwefelt (durch REA) und von NOx-Anteilen (DeNOx-Verfahren) befreit.

Humanmedizin

Aerosole werden vom Menschen eingeatmet, dabei scheidet sich ein Teil der inhalierten Aerosolpartikel im Atemtrakt ab. Ungefähr 10 % aller inhalierten Aerosolteilchen bleiben im Atemtrakt. Weil die Abscheidewahrscheinlichkeit eines Teilchens stark von seiner Größe abhängt, kann dies nur ein grober Richtwert sein. Teilchen, die mindestens bis in den Bronchialbereich vordringen können, heißen lungengängig. Dazu gehören alle Aerosolpartikel unterhalb eines Durchmessers von ungefähr 10 Mikrometer (PM10). Größere Teilchen scheiden sich schon in der Nase oder im Rachen ab oder lassen sich überhaupt nicht inhalieren. Am wenigsten scheiden sich Teilchen mit einem Durchmesser zwischen 0,5 Mikrometer und 1 Mikrometer ab. Das bedeutet gleichzeitig, dass sie besonders tief in die Lunge eindringen. Deutlich größere und kleinere Teilchen scheiden sich bereits in den oberen Bereichen stärker ab, dringen dadurch weniger tief ein und belasten die empfindlichen Alveolen weniger.

Im Atemtrakt abgeschiedene Aerosolteilchen verweilen dort eine gewisse Zeit. Ihre Verweilzeit hängt vom Teilchenmaterial und vom Depositionsort ab. Die Substanz leicht löslicher Teilchen verteilt sich schnell auf den gesamten Organismus. Chemisch sehr schwer lösliche Teilchen können bis zu mehreren Jahren im Alveolarbereich bleiben. Trotzdem bekämpft der Organismus auch diese Teilchen. Alveolarmakrophagen umschließen die Teilchen und können sie in einigen Fällen verdauen oder zumindest in die Lymphknoten transportieren. Flimmerhärchen im Bronchialbereich befördern dort deponierte Teilchen mechanisch recht schnell wieder aus dem Atemtrakt heraus. Mit den gesetzlichen Bestimmungen für Feinstaub nach PM10 und PM2.5 wird versucht, die Verhältnisse im Atemtrakt nachzubilden, um die Grenzwerte anhand ihrer Schadwirkung festzulegen.

Die Auswirkung inhalierter Teilchen auf den Menschen reichen von Vergiftungen über radioaktive Bestrahlung durch Radonzerfallsprodukte bis zu allergischen Reaktionen. Besonders gefährlich sind faserförmige Teilchen, besonders Asbest und Nanoröhren, weil Fasern die Lungenreinigung durch Makrophagen blockieren.

Aerosole dienen auch der Inhalationstherapie. Inhalationsgeräte zerstäuben Medikamente, die der Patient durch Inhalation in den Körper aufnimmt. Außer zur Bronchialbehandlung kann dieser Weg Unverträglichkeiten von Tabletten oder Spritzen umgehen. Ein großes Problem bei dieser Anwendung ist die richtige Dosierung eines Medikaments.

Anwendung und Nutzung

Gezielt hergestellt und genutzt werden Aerosole, um Stoffe auf Oberflächen gleichmäßig aufzutragen, etwa beim Lackieren oder Auftragen von Pflanzenschutzmitteln oder Schmiermitteln. Spraydosen mit Nasenspray, Haarspray oder Raumspray geben Aerosole ab, die dem Wohlbefinden dienen sollen, aber auch Risiken und Nebenwirkungen aufweisen. Nebelbrunnen erzeugen ein Aerosol aus Luft und Wasser, um die Luft durch Verdunstung der Tröpfchen zu befeuchten. Kälte- oder Sportlerspray kühlt durch Verdampfen.

In der elektronischen Kampfführung wurden Aerosole versprüht, welche eine Maskierung echter Ziele ähnlich den Düppeln bewirken sollen. Wolken aus Aerosolen könnten gegebenenfalls durch Kampfflugzeuge besser durchflogen werden, als Düppelwolken. Die Wirkung ist gegenüber modernen Radargeräten eher gering. Aerosole werden ebenfalls zur Abkühlung von Triebwerksabgasen verwendet, um Infrarot-Zielsuchköpfe von Flugabwehrraketen zu beeinträchtigen.<ref>Ashton B. Carter, David N. Schwartz: Ballistic Missile Defense Brookings Institution Press, 1984, ISBN 0-8157-1311-8, (eingeschränkte Vorschau in der Google-Buchsuche)</ref>

Siehe auch

Literatur

  • J. Feichter: Aerosole und das Klimasystem. In: Physik in unserer Zeit, 2003, 34, 72–79, doi:10.1002/piuz.200390034.
  • J. Schnelle-Kreis, M. Sklorz, H. Herrmann, R. Zimmermann: Atmosphärische Aerosole: Quellen, Vorkommen, Zusammensetzung. In: Chemie in unserer Zeit, 2007, 41, 220–230, doi:10.1002/ciuz.200700414.
  • T. Hoffmann, C. Zetzsch, M. J. Rossi: Chemie von Aerosolen. In: Chemie in unserer Zeit. 2007, 41, 232–246, doi:10.1002/ciuz.200700417.
  • Robert Sturm: Biogene Schwebepartikel in der Atmosphäre. Bioaerosole – was wir alles einatmen. In: Biologie in unserer Zeit 41(4), S. 256–261 (2011), doi:10.1002/biuz.201110456.
  • Ulrich Pöschl: Atmosphärische Aerosole: Zusammensetzung, Transformation, Klima- und Gesundheitseffekte, in: Angewandte Chemie 2005, 117, 7690–7712.

Weblinks

Wiktionary Wiktionary: Aerosol – Bedeutungserklärungen, Wortherkunft, Synonyme, Übersetzungen

Einzelnachweise

<references />