Atropin


aus Wikipedia, der freien Enzyklopädie
Wechseln zu: Navigation, Suche
Strukturformel
Strukturformel von Atropin
(R)-Form (oben) und (S)-Form (unten)
Allgemeines
Name Atropin; (±)-Hyoscyamin
Andere Namen
  • (±)-Tropintropat
  • (RS)-Tropintropat
  • rac-Tropintropat
  • (±)-β-Phenyl-γ-hydroxypropionsäuretropylester
  • (RS)-β-Phenyl-γ-hydroxypropionsäuretropylester
Summenformel C17H23NO3
CAS-Nummer
  • 51-55-8
  • 5908-99-6 (Atropinsulfat·Monohydrat)
PubChem 174174
ATC-Code
DrugBank APRD00807
Kurzbeschreibung

farblose Prismen<ref name=roempp>Eintrag zu Atropin. In: Römpp Online. Georg Thieme Verlag, abgerufen am 10. November 2014.</ref>

Arzneistoffangaben
Wirkstoffklasse

Parasympatholytikum

Eigenschaften
Molare Masse 289,38 g·mol−1
Aggregatzustand

fest

Schmelzpunkt

118 °C<ref name="ChemIDplus">Eintrag zu Atropin in der ChemIDplus-Datenbank der United States National Library of Medicine (NLM).</ref>

pKs-Wert

9,43<ref name="ChemIDplus"/>

Löslichkeit

wenig löslich in Wasser (2,2 g·l−1 bei 25 °C)<ref name="ChemIDplus"/>

Sicherheitshinweise
Bitte die eingeschränkte Gültigkeit der Gefahrstoffkennzeichnung bei Arzneimitteln beachten
GHS-Gefahrstoffkennzeichnung <ref name="GESTIS" />
06 – Giftig oder sehr giftig

Gefahr

H- und P-Sätze H: 300​‐​330
P: 260​‐​264​‐​284​‐​301+310​‐​310 <ref name="GESTIS">Eintrag zu CAS-Nr. 51-55-8 in der GESTIS-Stoffdatenbank des IFA, abgerufen am 10. Februar 2013 (JavaScript erforderlich).</ref>
EU-Gefahrstoffkennzeichnung <ref>Für Stoffe ist seit dem 1. Dezember 2012, für Gemische seit dem 1. Juni 2015 nur noch die GHS-Gefahrstoffkennzeichnung gültig. Die EU-Gefahrstoffkennzeichnung ist daher nur noch auf Gebinden zulässig, welche vor diesen Daten in Verkehr gebracht wurden.</ref> aus EU-Verordnung (EG) 1272/2008 (CLP) <ref> Eintrag aus der CLP-Verordnung zu CAS-Nr. 51-55-8 in der GESTIS-Stoffdatenbank des IFA (JavaScript erforderlich).</ref>
R- und S-Sätze R: 26/28
S: (1/2)​‐​25​‐​45
Toxikologische Daten
Soweit möglich und gebräuchlich, werden SI-Einheiten verwendet. Wenn nicht anders vermerkt, gelten die angegebenen Daten bei Standardbedingungen.

Atropin (abgeleitet von Atropos, griechische Schicksalsgöttin) ist ein sehr giftiges Tropan-Alkaloid. Es handelt sich um ein Racemat (1:1-Mischung) aus den Isomeren (R)- und (S)-Hyoscyamin, das sich bei der Isolierung durch Racemisierung aus dem Naturstoff (S)-Hyoscyamin bildet.

Vorkommen

(S)-Hyoscyamin kommt in Nachtschattengewächsen wie Alraunen (Mandragora), Engelstrompete (Brugmansia) und Stechapfel (Datura stramonium) vor. Seinen Namen verdankt das Alkaloid der Schwarzen Tollkirsche (Atropa belladonna).

Datei:Atropa bella-donna0.jpg
Die giftigen schwarzen Beeren der Schwarzen Tollkirsche (Atropa belladonna)

Als Entdecker des Atropins gilt der Heidelberger Pharmazeut Philipp Lorenz Geiger.<ref name="Geiger">Geiger, Philipp Lorenz. In: Edward Kremers, George Urdang: Kremers and Urdang's History of Pharmacy. Reprint of the 4th Edition. American Institute of the History of Pharmacy, Madison WI 1986, ISBN 0-931292-17-4, S. 459.</ref>

Chemische Struktur

Atropin ist die racemisierte Form des natürlich vorkommenden (S)-Hyoscyamins. Die Racemisierung findet bereits bei der Isolierung statt, wenn Laugen zum Einsatz kommen; hierbei bildet sich intermediär ein Enolat.<ref name="Schneider">Woldemar Schneider: Zur Kenntnis des 1-Hyoscyamins und Atropins. In: Archiv der Pharmazie. Bd. 284, Nr. 5/6, 1951, S. 306–318, doi:10.1002/ardp.19512840514.</ref> Durch eine Aufarbeitung unter neutralen Bedingungen (pH-Wert 7) kann die Racemisierung von (S)-Hyoscyamin unterdrückt werden. Der Bedeutung der Enantiomerenreinheit von Arzneistoffen wird zunehmend Beachtung geschenkt, denn die beiden Enantiomeren eines chiralen Arzneistoffes zeigen fast immer eine unterschiedliche Pharmakodynamik und Pharmakokinetik. Dies wurde früher aus Unkenntnis über stereochemische Zusammenhänge oft ignoriert.<ref name="Ariëns">E. J. Ariëns: Stereochemistry, a Basis for Sophisticated Nonsense in Pharmacokinetics and Clinical Pharmacology. In: European Journal of Clinical Pharmacology. Bd. 26, Nr. 6, 1984, S. 663–668, doi:10.1007/BF00541922.</ref> Arzneimittel enthalten den Arzneistoff Atropin als Racemat (1:1-Gemisch der Enantiomere), wobei aus grundsätzlichen Überlegungen die Verwendung des besser bzw. nebenwirkungsärmer wirksamen Enantiomers zu bevorzugen wäre.

Das (S)-Hyoscyamin ist ein Ester der Tropasäure mit α-Tropin und zählt somit zu den Tropan-Alkaloiden. Allein das 1:1-Gemisch von (R)- und (S)-Hyoscyamin wird Atropin genannt (vgl. Cahn-Ingold-Prelog-Konvention zur Benennung). Ein dem Hyoscyamin strukturell nah verwandtes Alkaloid ist das Scopolamin (Hyoscin).

Für die Verwendung als Edukt in chemischen Synthesen ist es vorteilhaft, von reinem natürlichem (S)-Hyoscyamin oder (R)-Hyoscyamin auszugehen.

Wirkungen

Atropin gehört zu den Parasympatholytika (auch Anticholinergika genannt). Atropin konkurriert somit an den muskarinischen Rezeptoren des Parasympathikus mit dem Neurotransmitter Acetylcholin. Atropin blockiert teilweise die Rezeptoren und hemmt somit den Parasympathikus. Die Wirkung des Acetylcholins sinkt. Der Einfluss des Parasympathikus sinkt, wodurch der Einfluss des Sympathikus überwiegt.

Atropin hat folgende körperliche Wirkungen:

  • Beschleunigung der Herzfrequenz (positive Chronotropie)
  • Beschleunigung der Erregungsweiterleitung am Herz (positive Dromotropie)
  • Weitstellung der Bronchien (Bronchodilatation)
  • Weitstellung der Pupillen (= Mydriasis, vgl. Atropa belladonna, Schwarze Tollkirsche)
  • stark verminderte Schweißbildung
  • verminderte Speichelbildung
  • Hemmung der Magen-Darm-Tätigkeit (verminderte Sekretion und Peristaltik)
  • Erschlaffung der glatten Muskulatur (Spasmolyse)
  • verminderte Sehfähigkeit, insbesondere in der Nähe (Hemmung der Akkommodation)
  • starke Lichtempfindlichkeit (Photophobie)
  • blockiert Rezeptoren der Nervenzellen (kein Erreichen der Rezeptoren durch Transmitter; Rezeptoren bleiben inaktiv)

Medizinische Verwendung

Kreislaufstillstand

Atropin wurde in der kardio-pulmonalen Reanimation bei Asystolie und pulsloser elektrischer Aktivität (PEA) eingesetzt, Dosen von 0,5 bis maximal 3 mg wurden intravenös verabreicht. Wegen mangelnder Evidenz ist die Gabe von Atropin bei einer Reanimation nach den Richtlinien des European Resuscitation Council nicht mehr empfohlen.<ref name="ALS">Charles D. Deakin, Jerry P. Nolan, Jasmeet Soar, Kjetil Sunde, Rudolph W. Koster, Gary B. Smith, Gavin D. Perkins: European Resuscitation Council Guidelines for Resuscitation 2010 Section 4. Adult advanced life support. In: Resuscitation. Bd. 81, Nr. 10, October 2010, S. 1305–1352, PMID 20956049, doi:10.1016/j.resuscitation.2010.08.017.</ref> Eine zu niedrige Dosierung kann paradoxerweise zu einer schweren Bradykardie führen und sollte entsprechend vermieden werden (mindestens 0,02 mg/kg Körpergewicht).

Einsatz bei Bradykardien

Atropin wird in der Anästhesie, Intensiv- und Notfallmedizin bei der symptomatischen Behandlung einer zu niedrigen Herzfrequenz (Bradykardie) verwendet. Bei fehlender Effektivität, etwa bei höhergradigen AV-Blöcken, ist die Anwendung von Katecholaminen (Adrenalin) und einer Schrittmachertherapie notwendig.<ref name="ALS"/>

Augenheilkunde

Atropin wird in der Augenheilkunde zur diagnostischen und therapeutischen Akkommodationslähmung eingesetzt. Als Mydriatikum wird Atropin aufgrund seiner langen Wirkdauer zur therapeutischen, jedoch nicht zur kurzzeitigen diagnostischen Erweiterung der Pupillen verwendet.

Verwendung als Gegengift

Atropin hemmt die muscarinartigen Wirkungen des Acetylcholins durch kompetitive Inhibition der Acetylcholinrezeptoren an der postsynaptischen Membran und unterbricht die Signalübertragung in der Nervenleitung. In sehr hohen Dosen hemmt Atropin vermutlich auch einige Subtypen des nikotinischen Acetylcholinrezeptors.<ref>Ruud Zwart, Henk P. M. Vijverberg: Potentiation and inhibition of neuronal nicotinic receptors by atropine: competitive and noncompetitive effects. In: Molecular Pharmacology. Bd. 52, Nr. 5, November 1997, S. 886–895, PMID 9351980, (Experiment an Frosch-Eizellen).</ref>

Auf Grund dieses Wirkungsmechanismus wird Atropin als Gegengift (Antidot) bei Vergiftungen mit bestimmten Pflanzenschutzmitteln (Insektiziden) und Nervenkampfstoffen eingesetzt, deren Giftwirkung auf einer irreversiblen Hemmung der Acetylcholinesterase beruht (z. B. organische Phosphorsäureester und Phosphonsäureester wie Parathion, Tabun oder Paraoxon). Patienten (z. B. mit Sarin kontaminierte Soldaten) werden per Autoinjektor Gaben von 2 mg Atropinsulfat bzw. 2 mg Atropinsulfat plus 220 mg Obidoximchlorid verabreicht. Atropin muss in ausreichenden Mengen im Notfalldepot jeder Apotheke vorhanden sein.

Prämedikation

Atropin hemmt vor allem die M1-, M2- und M3-Rezeptoren und verursacht so eine Steigerung der Herzfrequenz (M2), eine Reduktion der Magensäureproduktion (M1) sowie eine Speichelreduktion (M3). Zusammen mit einer dezenten Bronchodilatation (M3) sind diese Wirkungen auch von Vorteil für eine Narkoseeinleitung. Ein genereller Einsatz in der Prämedikation (medikamentöse Vorbereitung) von Narkosepatienten wird jedoch heute nicht mehr empfohlen, da das Nutzen-Nebenwirkungs-Verhältnis von Atropin-Sulfat schlecht ist.

Atropin vermindert die Speichel- und Schleimsekretion, was bei Operationen im Mund und Rachenbereich sowie bei fiberoptischen Intubationen und Bronchoskopien genutzt werden kann.

Seltene Anwendungsgebiete

Seltener findet Atropin Anwendung bei Krämpfen der glatten Muskulatur im Bereich des Magen-Darm-Trakts. Auch kann Atropin bei erschwerter Blasenentleerung, bei Harninkontinenz und zur Behandlung einer Reizblase gegeben werden. Selten wurde Atropin in der Frauenheilkunde bei Dysmenorrhoe (schmerzhafte Regelblutung) eingesetzt. Den gleichen Effekt erzielt man heute mit Butylscopolamin, einem chemisch weiterentwickelten Derivat des Scopolamins, das entspannend auf die verkrampfte glatte Muskulatur wirkt und aufgrund der geringeren Nebenwirkungen rezeptfrei erhältlich ist. Als Asthmamittel wird Atropin nicht mehr verwendet, stattdessen werden besser verträgliche Arzneistoffe eingesetzt. Der Atropintest kann zur kardiologischen Diagnostik und als Hilfestellung bei der Feststellung des Hirntodes verwendet werden.

Außerdem wird Atropin auch gegen übermäßiges Schwitzen (Hyperhidrose) eingesetzt (Off-Label-Use).

Missbrauch, Überdosierung, Vergiftung

Die Wirkungen auf Herz und Kreislauf stehen schon bei geringen Dosen im Vordergrund (z. B. zur Narkoseeinleitung). Psychische („berauschende“) Wirkungen sind erst bei hohen Dosen zu erwarten, bei denen unangenehme und gefährliche körperliche Nebenwirkungen auftreten.

Als Vergiftungssymptome wird bei hohen Dosen (siehe anticholinerges Syndrom) von Rötungen der Haut, Mydriasis, Herzrasen und Verwirrtheit wie Halluzinationen berichtet. Bei noch höheren Dosen tritt Bewusstlosigkeit ein, die von Atemlähmung gefolgt sein kann; bei einer Atemlähmung sind die Vergiftungen in der Regel tödlich. Die LD50 (oral) beträgt für den Menschen 453 mg.<ref name="Goodman">E. Goodman, J. Ketchum, R. Kirby: Historical Contributions to the Human Toxicology of Atropine. In: Eximdyne (2010). ISBN 978-0-9677264-3-4, S. 120.</ref> Ab 10 mg treten Delirien und Halluzinationen auf. Ab 100 mg kann eine tödliche Atemlähmung einsetzen. Insbesondere Kinder sind schon bei geringeren Dosen ab 10 mg in Gefahr.

Neben Vergiftungen durch freiwilligen oder unfreiwilligen Verzehr von Pflanzenteilen (zum Beispiel Tollkirsche) kommen medizinale Vergiftungen infolge Überdosierung, Verwechslung oder falscher Anwendung vor.

Die Erste Hilfe bei Atropinvergiftung besteht in sofortiger Entleerung des Magen-Darm-Traktes (Erbrechen, Magenspülung) sowie erforderlichenfalls künstlicher Beatmung bzw. Atemspende. Die erweiterten Maßnahmen zielen auf die medikamentöse Hemmung der Acetylcholinesterase, durch Physostigmin als Antidot, wodurch der Abbau des Acetylcholins verzögert wird. Folglich erhöht sich die Konzentration im synaptischen Spalt. Am Rezeptor selbst wird somit indirekt eine parasympathische Wirkung erzielt. Das Atropin wird aus dem Bereich der Rezeptoren verdrängt und die Reizleitung ist wiederhergestellt.

Geschichte

Die Wirkung von Atropin wurden unter anderem von Friedlieb Ferdinand Runge (1795–1867) studiert, im Jahr 1831 stellte jedoch der deutsche Pharmazeut Heinrich F. G. Mein (1799–1864)<ref>Biography of Heinrich Friedrich Georg Mein (1799–1864).</ref> Atropin in kristalliner Form dar<ref>Heinrich Friedrich Georg Mein (1831): Ueber die Darstellung des Atropins in weissen Kristallen, In: Annalen der Pharmacie, 6(1): 67–72 (eingeschränkte Vorschau in der Google-Buchsuche).
Unabhängig davon wurde Atropin 1833 von Geiger und Hesse isoliert:

  1. Geiger and Hesse (1833): Darstellung des Atropins, In: Annalen der Pharmacie, 5: 43–81 (eingeschränkte Vorschau in der Google-Buchsuche).
  2. Geiger and Hesse (1833): Fortgesetzte Versuche über Atropin, In: Annalen der Pharmacie, 6: 44–65 (eingeschränkte Vorschau in der Google-Buchsuche).</ref>, die erste Synthese gelang dem Chemiker Richard Willstätter im Jahr 1901.<ref>Richard Willstätter (1901) "Synthese des Tropidins", Berichte der Deutschen chemischen Gesellschaft zu Berlin, 34: 129–144.</ref><ref>Richard Willstätter (1901) "Umwandlung von Tropidin in Tropin", Berichte der Deutschen chemischen Gesellschaft zu Berlin, 34: 3163–3165.</ref>

Bedeutung des Atropins in der Renaissance

Große Pupillen galten während der Renaissance unter europäischen Frauen als schön („bella donna“). Das Einträufeln der (S)-Hyoscyamin enthaltenden Tollkirschen-Extrakte in die Augen bewirkte eine bis zu mehreren Tagen anhaltende Pupillenerweiterung („feuriger Blick“).<ref name=roempp />

Einzelnachweise

<references/>

Handelsnamen

Monopräparate

Bellafit (CH), Dysurgal (D), Generika (D, A, CH)

Weblinks

Commons Commons: Atropin – Sammlung von Bildern, Videos und Audiodateien
Gesundheitshinweis Dieser Artikel behandelt ein Gesundheitsthema. Er dient nicht der Selbstdiagnose und ersetzt keine Arztdiagnose. Bitte hierzu diese Hinweise zu Gesundheitsthemen beachten!